Modelling and numerical approximation for the nonconservative bitemperature Euler model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1353-1383.

This paper is devoted to the study of the nonconservative bitemperature Euler system. We firstly introduce an underlying two species kinetic model coupled with the Poisson equation. The bitemperature Euler system is then established from this kinetic model according to an hydrodynamic limit. A dissipative entropy is proved to exist and a solution is defined to be admissible if it satisfies the related dissipation property. Next, four different numerical methods are presented. Firstly, the kinetic model gives rise to kinetic schemes for the fluid system. The second approach belongs to the family of the discrete BGK schemes introduced by Aregba–Driollet and Natalini. Finally, a quasi-linear relaxation approach and a Lagrange-remap scheme are considered.

DOI : 10.1051/m2an/2017007
Classification : 65M08, 35L60, 35L65, 82D10, 76X05
Mots-clés : Relaxation method, nonconservative hyperbolic system, kinetic schemes, BGK models, hydrodynamic limit, entropy dissipation
Aregba–Driollet, D. 1, 2 ; Breil, J. 2 ; Brull, S. 1 ; Dubroca, B. 2 ; Estibals, E. 3

1 Univ. Bordeaux, IMB, UMR 5251, 33405 Talence, France
2 Univ. Bordeaux, CELIA, UMR 5107, 33400 Talence, France
3 INRIA Sophia Antipolis Méditerranée, 2004 route des lucioles, 06902 Valbonne, France
@article{M2AN_2018__52_4_1353_0,
     author = {Aregba{\textendash}Driollet, D. and Breil, J. and Brull, S. and Dubroca, B. and Estibals, E.},
     title = {Modelling and numerical approximation for the nonconservative bitemperature {Euler} model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1353--1383},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017007},
     mrnumber = {3875289},
     zbl = {1417.65158},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017007/}
}
TY  - JOUR
AU  - Aregba–Driollet, D.
AU  - Breil, J.
AU  - Brull, S.
AU  - Dubroca, B.
AU  - Estibals, E.
TI  - Modelling and numerical approximation for the nonconservative bitemperature Euler model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1353
EP  - 1383
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017007/
DO  - 10.1051/m2an/2017007
LA  - en
ID  - M2AN_2018__52_4_1353_0
ER  - 
%0 Journal Article
%A Aregba–Driollet, D.
%A Breil, J.
%A Brull, S.
%A Dubroca, B.
%A Estibals, E.
%T Modelling and numerical approximation for the nonconservative bitemperature Euler model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1353-1383
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017007/
%R 10.1051/m2an/2017007
%G en
%F M2AN_2018__52_4_1353_0
Aregba–Driollet, D.; Breil, J.; Brull, S.; Dubroca, B.; Estibals, E. Modelling and numerical approximation for the nonconservative bitemperature Euler model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1353-1383. doi : 10.1051/m2an/2017007. http://www.numdam.org/articles/10.1051/m2an/2017007/

[1] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. | DOI | MR | Zbl

[2] P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106 (2002) 993–1018. | DOI | MR | Zbl

[3] K. Aoki, C. Bardos and S. Takata, Knudsen layer for gas mixtures. J. Stat. Phys. 112 (2003) 629–655. | DOI | MR | Zbl

[4] D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973–2004. | DOI | MR | Zbl

[5] D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput. 73 (2004) 63–94. | DOI | MR | Zbl

[6] C. Berthon, F. Coquel and P. Lefloch, Why many theories of shock waves are necessary: kinetic relations for nonconservative systems. Proc. Roy. Soc. Edinburgh. 142 (2012) 1–37. | DOI | MR | Zbl

[7] C. Berthon, B. Dubroca and A. Sangam, A local entropy minimum principle for deriving entropy preserving schemes. SIAM J. Numer. Anal. 50 (2012) 468–491. | DOI | MR | Zbl

[8] F. Bouchut, Construction of BGK models with a family of kinetic entropy for a given system of conservation laws. J. Stat. Phys. 95 (1999) 113–170. | DOI | MR | Zbl

[9] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. J. Stat. Phys. 95 (1999) 113–170. | DOI | MR | Zbl

[10] J. Breil, S. Galera and P.-H. Maire, Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids 46 (2011) 161–167. | DOI | MR | Zbl

[11] S. Brull, An Ellipsoidal Statistical Model for gas mixtures. Commun. Math. Sci. 13 (2015) 1–13. | DOI | MR | Zbl

[12] S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations. J. Comput. Phys. 266 (2014) 22–46. | DOI | MR | Zbl

[13] S. Brull, V. Pavan and J. Schneider, Derivation of BGK models for mixtures. Eur. J. Mech. B-Fluids. (2012) 74–86. | DOI | MR | Zbl

[14] C. Chalons and F. Coquel, Computing material fronts with a Lagrange-projection approach, in Hyperbolic problems – theory, numerics and applications. Volume 1, Vol. 17 of Ser. Contemp. Appl. Math. CAM. World Scientific, Publishing, Singapore (2012) 346–356. | DOI | MR | Zbl

[15] C. Chalons, M. Girardin and S. Kokh, An all-regime lagrange-projection like scheme for the gas dynamics equations on unstructured meshes. Tech. Report, HAL (2014). | MR | Zbl

[16] F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, in Godunov methods. Oxford (1999), Kluwer/Plenum, New York (2001) 179–188. | MR | Zbl

[17] F. Coquel and C. Marmignon, Numerical methods for weakly ionized gas. In vol. 260 of Astrophysics and Space Science (1998) 15–27. | MR | Zbl

[18] G. Dal Maso, P. Le Floch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

[19] P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses. Math. Models Methods Appl. Sci. 3 (1996) 405–436. | DOI | MR | Zbl

[20] P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases. Transp. Theory Statist. Phys. 25 (1996) 595–633. | DOI | MR | Zbl

[21] V. Garzo, S. A. and J. Brey, A kinetic model for a multicomponent gas. Phys. Fluids A 1 (1989) 380–383. | DOI | Zbl

[22] E. Godlewski and P. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer (1995). | MR | Zbl

[23] J. Greene, Improved Bhatnagar-Gross-Krook model of electron-ion collisions. Phys. Fluids 16 (1973) 2022–2023. | DOI

[24] B. Hamel, Kinetic model for binary gas mixtures. Phys. Fluids 8 (1968) 418–425. | DOI

[25] T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. | DOI | MR | Zbl

[26] P.-H. Maire, R. Abgrall, J. Breil and J. Ovadia, A cell-centered Lagrangian scheme for two dimensional compressible flow problems. SIAM J. Sci. Comput. 29 (2007) 1781–1824. | DOI | MR | Zbl

[27] T. Morse, Kinetic model equation for a gas mixture. Phys. Fluids 8 (1964) 2012–2013. | DOI | MR

[28] R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148 (1998) 292–317. | DOI | MR | Zbl

[29] M. Olazabal-Loumé, J. Breil, L. Hallo and X. Ribeyre, Linear and non-linear high mode perturbations amplification at ablation front in HIPER targets. Plasma Phys. Control. Fusion (2011).

[30] C. Pares, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. | DOI | MR | Zbl

[31] M. Pelanti and K. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. | DOI | MR | Zbl

[32] B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 1405–1421. | DOI | MR | Zbl

[33] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 923–935. | DOI | MR | Zbl

[34] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid. Mech. 607 (2008) 313–350. | DOI | MR | Zbl

[35] R. Saurel, F. Petitpas and R. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228 (2009) 1678–1712. | DOI | MR | Zbl

[36] B. Zel’Dovich and P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press (1966).

Cité par Sources :