A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1457-1476.

The a posteriori analysis of the discretization error and the modeling error is studied for a compliance cost functional in the context of the optimization of composite elastic materials and a two-scale linearized elasticity model. A mechanically simple, parametrized microscopic supporting structure is chosen and the parameters describing the structure are determined minimizing the compliance objective. An a posteriori error estimate is derived which includes the modeling error caused by the replacement of a nested laminate microstructure by this considerably simpler microstructure. Indeed, nested laminates are known to realize the minimal compliance and provide a benchmark for the quality of the microstructures. To estimate the local difference in the compliance functional the dual weighted residual approach is used. Different numerical experiments show that the resulting adaptive scheme leads to simple parametrized microscopic supporting structures that can compete with the optimal nested laminate construction. The derived a posteriori error indicators allow to verify that the suggested simplified microstructures achieve the optimal value of the compliance up to a few percent. Furthermore, it is shown how discretization error and modeling error can be balanced by choosing an optimal level of grid refinement. Our two scale results with a single scale microstructure can provide guidance towards the design of a producible macroscopic fine scale pattern.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017004
Classification : 35B27, 49M29, 49Q1, 65N30, 65N38, 74P05
Mots clés : Elastic shape optimization, two-scale optimization, nested laminates, homogenization, a posteriori error estimates, adaptive meshes
Conti, Sergio 1 ; Geihe, Benedict 1 ; Lenz, Martin 1 ; Rumpf, Martin 1

1 Institute for Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{M2AN_2018__52_4_1457_0,
     author = {Conti, Sergio and Geihe, Benedict and Lenz, Martin and Rumpf, Martin},
     title = {A posteriori modeling error estimates in the optimization of two-scale elastic composite materials},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1457--1476},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017004},
     mrnumber = {3875293},
     zbl = {1456.65159},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017004/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Geihe, Benedict
AU  - Lenz, Martin
AU  - Rumpf, Martin
TI  - A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1457
EP  - 1476
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017004/
DO  - 10.1051/m2an/2017004
LA  - en
ID  - M2AN_2018__52_4_1457_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Geihe, Benedict
%A Lenz, Martin
%A Rumpf, Martin
%T A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1457-1476
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017004/
%R 10.1051/m2an/2017004
%G en
%F M2AN_2018__52_4_1457_0
Conti, Sergio; Geihe, Benedict; Lenz, Martin; Rumpf, Martin. A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1457-1476. doi : 10.1051/m2an/2017004. http://www.numdam.org/articles/10.1051/m2an/2017004/

[1] G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27–68. | DOI | MR | Zbl

[2] G. Allaire and R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids 12 (1993) 839–878. | MR | Zbl

[3] G. Allaire, Shape optimization by the homogenization method. Vol. 146 of Appl. Math. Sci. Springer Verlag, New York (2002). | DOI | MR | Zbl

[4] G. Allaire and R.V. Kohn, Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions. Quart. Appl. Math. 51 (1993) 675–699. | DOI | MR | Zbl

[5] P. Atwal, S. Conti, B. Geihe, M. Pach, M. Rumpf and R. Schultz, On shape optimization with stochastic loadings. In Constrained Optimization and Optimal Control for Partial Differential Equations. edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich. Vol. 160 of International Series of Numerical Mathematics, Chap. 2. Springer, Basel (2012) 215–243. | DOI | MR

[6] M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47 (1987) 1216–1228. | DOI | MR | Zbl

[7] C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. I. The shape and the topological derivative. Struct. Multidiscip. Optimiz. 40 (2010) 381–391. | DOI | MR | Zbl

[8] C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. II. Optimization algorithm and numerical examples. Struct. Multidiscip. Optim. 40 (2010) 393–408. | DOI | MR | Zbl

[9] C. Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructure. Mech. Adv. Materials Structures 19 (2012) 290–301. | DOI

[10] R. Becker, E. Estecahandy and D. Trujillo, Weighted marking for goal-oriented adaptive finite element methods. SIAM J. Numer. Anal. 49 (2011) 2451–2469. | DOI | MR | Zbl

[11] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optimiz. 39 (2000) 113–132. | DOI | MR | Zbl

[12] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. Comput. Mech. 5 (1997) 434–446.

[13] M.P. Bendsøe, J. M. Guedes, R. B. Haber, P. Pedersen and J.E. Taylor, An analytical model to predict optimal material properties in the context of optimal structural design. Trans. ASME J. Appl. Mech. 61 (1994) 930–937. | DOI | MR | Zbl

[14] M.P. Bendsøe, Optimization of structural topology, shape and material. Springer Verlag, Berlin (1995). | DOI | MR | Zbl

[15] M.P. Bendsøe, A. Díaz and N. Kikuchi, Topology and generalized layout optimization of elastic structures. In Topology design of structures (Sesimbra, 1992). Vol. 227 of NATO Adv. Sci. Inst. Ser. E Appl. Sci. Kluwer Acad. Publ., Dordrecht (1993) 159–205. | MR

[16] M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71 (1988) 197–224. | DOI | MR | Zbl

[17] O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optimiz. Appl. 44 (2009) 3–25. | DOI | MR | Zbl

[18] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Vol. 12 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York (1998). | MR | Zbl

[19] C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, Advanced numerical methods for pde constrained optimization with application to optimal design in navier stokes flow. In Constrained Optimization and Optimal Control for Partial Differential Equations, edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich. Vol. 160 of International Series of Numerical Mathematics. Springer Basel (2012) 257–275. | DOI | MR | Zbl

[20] G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optimiz. 23 (1991) 17–49. | DOI | MR | Zbl

[21] A. Cherkaev, Variational methods for structural optimization. In Vol. 140 of Applied Mathematical Sciences. Springer Verlag, New York (2000). | DOI | MR | Zbl

[22] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Company (1978). | MR | Zbl

[23] D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press, Oxford (1999). | MR | Zbl

[24] S. Conti, B. Geihe, M. Rumpf and R. Schultz, Two-stage stochastic optimization meets two-scale simulation. In Trends in PDE Constrained Optimization, edited by G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich. Vol. 165 of Inter. Series Numer. Math. Springer International Publishing (2014) 193–211. | DOI | MR

[25] M.C. Delfour and J. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization. In Vol. 4 of Advances in Design and Control SIAM (2001). | MR | Zbl

[26] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | DOI | MR | Zbl

[27] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | DOI | MR | Zbl

[28] W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems. In Multiscale Methods in Science and Engineering. Vol. 44 of Lect. Notes Comput. Sci. Eng. Springer Berlin Heidelberg (2005) 89–110. | MR | Zbl

[29] W. E, B. Engquist and Z. Huang, Heterogeneous multiscale method: A general methodology for multiscale modeling. Phys. Rev. B 67 (2003) 1–4.

[30] W.E,P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (2005) 121–156. | MR | Zbl

[31] G.A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity. Arch. Rational Mech. Anal. 94 (1986) 307–334. | DOI | MR | Zbl

[32] B. Geihe and M. Rumpf, A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems – Series S 9 (2016) 1377–1392. | DOI | MR | Zbl

[33] L. Gibiansky and A. Cherkaev, Microstructures of composites of extremal rigidity and exact estimates of the associated energy density. Loffe Physicotechnical Institute (1987) 1115.

[34] Y. Grabovsky and R.V. Kohn, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I. The confocal ellipse construction. J. Mech. Phys. Solids 43 (1995) 933–947. | DOI | MR | Zbl

[35] Z. Hashin, The elastic moduli of heterogeneous materials. Trans. ASME Ser. E. J. Appl. Mech. 29 (1962) 143–150. | DOI | MR | Zbl

[36] J. Haslinger, M. Kočvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization. SIAM J. Appl. Math. 70 (2010) 2709–2728. | DOI | MR | Zbl

[37] P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numer. Math. 113 (2009) 601–629. | DOI | MR | Zbl

[38] V.V. Jikov, S.M. Kozlov and O.A. Oleĭnik, Homogenization of differential operators and integral functionals. Springer Verlag, Berlin (1994). | MR | Zbl

[39] C.S. Jog, R.B. Haber and M.P. Bendsøe, Topology design with optimized, self-adaptive materials. Internat. J. Numer. Methods Engrg. 37 (1994) 1323–1350. | DOI | MR | Zbl

[40] C.S. Jog and R.B. Haber, Stability of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl. Mech. Eng. 130 (1996) 203–226. | DOI | MR | Zbl

[41] F. Jouve and E. Bonnetier, Checkerboard instabilities in topological shape optimization algorithms. In Proc. of the Conference on Inverse Problems, Control and Shape Optimization (PICOF’98) Carthage (1998).

[42] L. Kaland, J.C. De Los Reyes and N.R. Gauger, One-shot methods in function space for pde-constrained optimal control problems. Optimiz. Methods Software 29 (2014) 376–405. | DOI | MR | Zbl

[43] L. Kaland, The one-shot method: function space analysis and algorithmic extension by adaptivity. Dissertation, RWTH Aachen (2013).

[44] B. Kiniger and B. Vexler, A priori error estimates for finite element discretizations of a shape optimization problem. ESAIM: M2AN 47 (2013) 1733–1763, 11. | DOI | Numdam | MR | Zbl

[45] P. Kogut and G. Leugering, Matrix-Valued L1-Optimal Controls in the Coefficients of Linear Elliptic Problems. Z. Anal. Anwend. 32 (2013) 433–456. | DOI | MR | Zbl

[46] R.V. Kohn and R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Rational Mech. Anal. 102 (1988) 331–350. | DOI | MR | Zbl

[47] D. Leykekhman, D. Meidner and B. Vexler, Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optimiz. Appl. 55 (2013) 769–802. | DOI | MR | Zbl

[48] J. Liu, L. Cao, N. Yan and J. Cui, Multiscale approach for optimal design in conductivity of composite materials. SIAM J. Numer. Anal. 53 (2015) 1325–1349. | DOI | MR | Zbl

[49] K.A. Lurie and A.V. Cherkaev, Effective characteristics of composite materials and the optimal design of structural elements. Adv. Mech. 9 (1986) 3–8. | MR | Zbl

[50] G.W. Milton, The Theory of Composites. Cambridge University Press (2002). | MR | Zbl

[51] P. Morin, R. Nochetto, M. Pauletti and M. Verani, Adaptive sqp method for shape optimization. In Numerical Mathematics and Advanced Applications 2009, edited by G. Kreiss, P. Lötstedt, A. Målqvist and M. Neytcheva. Springer Berlin Heidelberg (2010) 663–673. | MR | Zbl

[52] P. Morin, R.H. Nochetto, M.S. Pauletti and M. Verani, Adaptive finite element method for shape optimization. ESAIM: COCV 18 (2012) 1122–1149, 10 | Numdam | MR | Zbl

[53] F. Murat and L. Tartar, Calcul des variations et homogénéisation. In Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983), Vol. 57 of Collect. Dir. Etudes Rech. Elec. France. Eyrolles, Paris (1985) 319–369. | MR

[54] J.T. Oden and K. Vemaganti, Adaptive modeling of composite structures: Modeling error estimation. Inter. J. Comput. Civil and Structural Eng. 1 (2000) 1–16.

[55] J.T. Oden and K.S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164 (2000) 22–47. | DOI | MR | Zbl

[56] M. Ohlberger, A posterior error estimates for the heterogenoeous mulitscale finite element method for elliptic homogenization problems. SIAM Multiscale Mod. Simul. 4 (2005) 88–114. | DOI | MR | Zbl

[57] O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization. SIAM J. Control Optim. 47 (2008) 1380–1398. | DOI | MR | Zbl

[58] S. Prudhomme and J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg. 176 (1999) 313–331. New advances in computational methods. Cachan (1997) | DOI | MR | Zbl

[59] H. Rodrigues and P. Fernandes, Topology optimal design of thermoelastic structures using a homogenization method. Shape design and optimization. Control Cybernet. 23 (1994) 553–563. | MR | Zbl

[60] O. Steinbach, Numerische Näherungsverfahren für elliptische Randwertprobleme: Finite Elemente und Randelemente, edited by B.G. Teubner, Wiesbaden (2003). | Zbl

[61] K. Suzuki and N. Kikuchi, Layout optimization using the homogenization method. In Optimization of large structural systems, Vol. I, II (Berchtesgaden, 1991). Vol. 231 of NATO Sciences Serie E. Kluwer Acad. Publ., Dordrecht (1993) 157–175. | MR

[62] L. Tartar, Estimations fines des coefficients homogénéisés. In Ennio De Giorgi colloquium (Paris). Vol. 125 of Res. Notes in Math. Pitman, Boston, MA (1985) 168–187. | MR | Zbl

[63] K. Vemaganti, Modelling error estimation and adaptive modelling of perforated materials. Inter. J. Numer. Methods Engrg. 59 (2004) 1587–1604. | DOI | MR | Zbl

[64] B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optimiz. 47 (2008) 509–534. | DOI | MR | Zbl

[65] S. Vigdergauz, Two-dimensional grained composites of extreme rigidity. J. Appl. Mech. 61 (1994) 390–394. | DOI | Zbl

[66] A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. Ph. D. Thesis, Carnegie Mellon University (2002).

[67] A. Wächter and L.T. Biegler, On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math. Program. 106 (2006) 25–57. | DOI | MR | Zbl

[68] W. Wollner, Goal-oriented adaptivity for optimization of elliptic systems subject to pointwise inequality constraints: Application to free material optimization. PAMM 10 (2010) 669–672. | DOI

Cité par Sources :