We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin (IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ) mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation and amounts to the construction of an equilibrated moment tensor which is done by local interpolation. The reliability estimate is a direct consequence of the two-energies principle and does not involve generic constants. The efficiency of the estimator follows by showing that it can be bounded from above by a residual-type estimator known to be efficient. A documentation of numerical results illustrates the performance of the estimator.
Accepté le :
DOI : 10.1051/m2an/2016074
Mots-clés : Biharmonic equation, two-energies principle, interior penalty discontinuous Galerkin method, a posteriori error estimator, equilibration
@article{M2AN_2018__52_6_2479_0, author = {Braess, Dietrich and Hoppe, R.H.W. and Linsenmann, Christopher}, title = {A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous {Galerkin} approximation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2479--2504}, publisher = {EDP-Sciences}, volume = {52}, number = {6}, year = {2018}, doi = {10.1051/m2an/2016074}, zbl = {1419.31004}, mrnumber = {3911627}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016074/} }
TY - JOUR AU - Braess, Dietrich AU - Hoppe, R.H.W. AU - Linsenmann, Christopher TI - A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 2479 EP - 2504 VL - 52 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016074/ DO - 10.1051/m2an/2016074 LA - en ID - M2AN_2018__52_6_2479_0 ER -
%0 Journal Article %A Braess, Dietrich %A Hoppe, R.H.W. %A Linsenmann, Christopher %T A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 2479-2504 %V 52 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016074/ %R 10.1051/m2an/2016074 %G en %F M2AN_2018__52_6_2479_0
Braess, Dietrich; Hoppe, R.H.W.; Linsenmann, Christopher. A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2479-2504. doi : 10.1051/m2an/2016074. http://www.numdam.org/articles/10.1051/m2an/2016074/
[1] Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000). | DOI | MR | Zbl
and ,[2] Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes. SIAM J. Numer. Anal. 47 (2010) 4112–4141. | DOI | MR | Zbl
and ,[3] Constant free error bounds for non-uniform order discontinuous Galerkin finite element approximation on locally refined meshes with hanging nodes. IMA J. Numer. Anal. 31 (2011) 254–280. | DOI | MR | Zbl
and ,[4] The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72 (1968) 701–709.
, and ,[5] Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM: M2AN 19 (1985) 7–32. | DOI | Numdam | MR | Zbl
and ,[6] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. | DOI | MR | Zbl
, , and ,[7] The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001). | MR
and ,[8] A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22 (2003) 751–756. | DOI | MR | Zbl
,[9] A mixed method for the biharmonic problem based on a system of first order equations. SIAM J. Numer. Anal. 49 (2011) 789–817. | DOI | MR | Zbl
and ,[10] A posteriori error estimates for the Morley plate bending element. Numer. Math. 106 (2007) 165–179. | DOI | MR | Zbl
, and ,[11] A family of C0 finite elements for Kirchhoff plates I: Error analysis. Siam J. Numer. Anal. 45 (2007) 2047–2071. | DOI | MR | Zbl
, and ,[12] A family of C0 finite elements for Kirchhoff plates II: Numerical results. Comput. Meths. Appl. Mech Engrg. 197 (2008) 1850–1864. | DOI | MR | Zbl
, and ,[13] A posteriori error analysis for the Morley plate element with general boundary conditions. Int. J. Numer. Meth. Engrg. 83 (2010) 1–26. | DOI | MR | Zbl
, and ,[14] Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics. 3rd ed.. Cambridge University Press, Cambridge (2007). | MR | Zbl
,[15] An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014) 2121–2136. | DOI | MR | Zbl
, and ,[16] A posteriori estimators for obstacle problems by the hypercircle method. Comput. Visual. Sci. 11 (2008) 351–362. | DOI | MR | Zbl
, and ,[17] Equilibrated residual error estimates are p-robust. Comput. Meth. Appl. Mech. Engrg. 198 (2009) 1189–1197. | DOI | MR | Zbl
, and ,[18] Equilibrated residual error estimator for edge elements. Math. Comput. 77 (2008) 651–672. | DOI | MR | Zbl
and ,[19] The Mathematical Theory of Finite Element Methods. 3rd Edition. Springer, New York (2008). | MR | Zbl
and ,[20] An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30 (2010) 777–798. | DOI | MR | Zbl
, and ,[21] C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23 (2005) 83–118. | DOI | MR | Zbl
and ,[22] Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York (1991). | DOI | MR | Zbl
and ,[23] A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by . Academic Press, New York (1974) 125–145. | DOI | MR | Zbl
and ,[24] Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Part. Differ. Eq. 24 (2008) 1236–1252. | DOI | MR | Zbl
and ,[25] A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40 (2009) 141–187. | DOI | MR | Zbl
, and ,[26] A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | DOI | MR | Zbl
,[27] A family of C# finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér. 13 (1979) 227–255. | DOI | Numdam | MR | Zbl
, , and ,[28] Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191 (2002) 3669–3750. | DOI | MR | Zbl
, , , , and ,[29] An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Acad. Sci. Paris Ser. I 345 (2007) 709–712. | DOI | MR | Zbl
, and ,[30] A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26 (2008) 488–510. | MR | Zbl
and ,[31] Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234 (2010) 114–130. | DOI | MR | Zbl
, and ,[32] Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. C.R. Acad. Sci. Paris Ser. I 347 (2009) 4441–4444. | MR | Zbl
and ,[33] Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the biharmonic problem. J. Numer. Math. 23 (2015) 311–330. | DOI | MR | Zbl
, and ,[34] Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29 (2009) 73–594. | DOI | MR | Zbl
, ,[35] An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems. IMA J. Numer. Anal. 31 (2011) 281–298. | DOI | MR | Zbl
, and ,[36] Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne (1985). | MR | Zbl
,[37] Mixed discontinuous Galerkin finite element method for the biharmonic equation, J. Sci. Comput.. 37 (2008) 139–161. | DOI | MR | Zbl
, and ,[38] Analysis of elastic plates in flexure by a simplified finite element method. Civil Engineering Series 46 (1967). | Zbl
,[39] Finite element bending analysis for plates. J. Eng. Mech. Div. A.S.C.E. EM5 93 (1967) 13–26.
,[40] Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2009) 534–550. | DOI | MR | Zbl
, and ,[41] A reduced local C0 discontinuous Galerkin method for Kirchhoff plates. Numer. Meth. Part. Diff. Equ. 30 (2014) 1902–1930. | DOI | MR | Zbl
and ,[42] On the convergence of a mixed finite element method for plate bending problems. Numer. Math. 21 (1973) 43–62. | DOI | MR | Zbl
,[43] A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3 (2003) 1–12. | DOI | MR | Zbl
and ,[44] hp-Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30 (2007) 465–491. | DOI | MR | Zbl
, and ,[45] A posteriori error estimates for boundary-value problems related to the biharmonic equation. East-West J. Numer. Math. 9 (2001) 157–178. | MR | Zbl
and ,[46] An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl
and ,[47] Approximations in elasticity based on the concept of function spaces. Quart. Appl. Math. 5 (1947) 241–269. | DOI | MR | Zbl
and ,[48] hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196 (2007) 1851–1863. | DOI | MR | Zbl
and ,[49] The method of the hypercircle in function-space for boundary-value problems. Proc. Royal Soc. London, Ser. A 191 (1947) 447–467. | MR | Zbl
,[50] The Hypercircle Method in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, New York (1957). | MR | Zbl
,[51] Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin–Heidelberg–New York (2007).
,[52] Local a posteriori error estimator based on the hypercircle methof. In Proceedings ECCOMAS 2004. edited by .University of Jyväskylä, Jyväskylä (2004) 16.
,[53] A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218 (2006) 860–877. | DOI | MR | Zbl
, and ,Cité par Sources :