A DDFV method for a Cahn−Hilliard/Stokes phase field model with dynamic boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1691-1731.

In this paper we propose a “Discrete Duality Finite Volume” method (DDFV for short) for the diffuse interface modelling of incompressible two-phase flows. This numerical method is, conservative, robust and is able to handle general geometries and meshes. The model we study couples the Cahn−Hilliard equation and the unsteady Stokes equation and is endowed with particular nonlinear boundary conditions called dynamic boundary conditions. To implement the scheme for this model we have to derive new discrete consistent DDFV operators that allows an energy stable coupling between both discrete equations. We are thus able to obtain the existence of a family of solutions satisfying a suitable energy inequality, even in the case where a first order time-splitting method between the two subsystems is used. We illustrate various properties of such a model with some numerical results.

DOI : 10.1051/m2an/2016073
Classification : 35K55, 65M08, 65M12, 76D07, 76M12, 76T10
Mots-clés : Cahn–Hilliard/Stokes model, dynamic boundary conditions, contact angle dynamics, finite volume method
Boyer, Franck 1 ; Nabet, Flore 2, 3

1 Université Toulouse 3 – Paul Sabatier, CNRS, Institut de Mathématiques de Toulouse, UMR 5129, 31062 Toulouse, France
2 CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France
3 Team RAPSODI, Inria Lille – Nord Europe, 40 av. Halley, 59650 Villeneuve d’Ascq, France
@article{M2AN_2017__51_5_1691_0,
     author = {Boyer, Franck and Nabet, Flore},
     title = {A {DDFV} method for a {Cahn\ensuremath{-}Hilliard/Stokes} phase field model with dynamic boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1691--1731},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2016073},
     mrnumber = {3731546},
     zbl = {1391.35196},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016073/}
}
TY  - JOUR
AU  - Boyer, Franck
AU  - Nabet, Flore
TI  - A DDFV method for a Cahn−Hilliard/Stokes phase field model with dynamic boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1691
EP  - 1731
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016073/
DO  - 10.1051/m2an/2016073
LA  - en
ID  - M2AN_2017__51_5_1691_0
ER  - 
%0 Journal Article
%A Boyer, Franck
%A Nabet, Flore
%T A DDFV method for a Cahn−Hilliard/Stokes phase field model with dynamic boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1691-1731
%V 51
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016073/
%R 10.1051/m2an/2016073
%G en
%F M2AN_2017__51_5_1691_0
Boyer, Franck; Nabet, Flore. A DDFV method for a Cahn−Hilliard/Stokes phase field model with dynamic boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1691-1731. doi : 10.1051/m2an/2016073. http://www.numdam.org/articles/10.1051/m2an/2016073/

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2009) 463–506. | DOI | MR | Zbl

H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57 (2008) 659–698. | DOI | MR | Zbl

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013, 40. | DOI | MR | Zbl

B. Andreianov, M. Bendahmane, F. Hubert and S. Krell, On 3D DDFV discretization of gradient and divergence operators. I. meshing, operators and discrete duality. IMA J. Numer. Anal. 32 (2012) 1574–1603. | DOI | MR | Zbl

B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. | DOI | MR | Zbl

M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet. On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. | DOI | MR | Zbl

F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31 (2002) 41–68. | DOI | Zbl

F. Boyer, F. Hubert and S. Krell, Nonoverlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes. IMA J. Numer. Anal. 30 (2010) 1062–1100. | DOI | MR | Zbl

F. Boyer, S. Krell and F. Nabet, Inf-sup stability of the discrete duality finite volume method for the 2D stokes problem. Math. Comput. 84 (2015) 2705–2742. | DOI | MR | Zbl

F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn−Hilliard/Navier−Stokes model for the simulation of three-phase flows. Trans. Porous Media 82 (2010) 463–483. | DOI | MR

F. Boyer and S. Minjeaud, Numerical schemes for a three component Cahn−Hilliard model. ESAIM: M2AN 45 (2011) 697–738. | DOI | Numdam | MR | Zbl

A. Carlson, M. Do Quang and G. Amberg, Dissipation in rapid dynamic wetting. J. Fluid Mech. 682 (2011) 213–240. | DOI | Zbl

L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn−Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27 (2010) 1511–1533. | DOI | MR | Zbl

R. Chill, E. Fašangová And J. Prüss, Convergence to steady state of solutions of the Cahn−Hilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr. 279 (2006) 1448–1462. | DOI | MR | Zbl

K. Domelevo and P. Omnes. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl

S. Dong, On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows. Comput. Methods Appl. Mech. Engrg. 247/248 (2012) 179–200. | DOI | MR | Zbl

S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach. J. Comput. Phys. 266 (2014) 47–73. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Handbook of numerical analysis, Vol. VII. Edited by Ph. Ciarlet and J.L. Lions. North-Holland, Amsterdam (2000) 715–1022. | MR | Zbl

R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn and G. Manzini, 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Proc. of Finite Volumes for Complex Applications, Vol. VI. Springer (2011) 895–930. | Zbl

H.P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79 (1997) 893–896. | DOI

H.P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin films. EPL Europhys. Lett. 42 (1998) 49–54. | DOI

T. Goudon and S. Krell, A DDFV Scheme for Incompressible Navier−Stokes equations with variable density. In Proc. of Finite Volumes for Complex Applications VII, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. In Vol. 77 and 78. Springer Proceedings in Mathematics and Statistics. Springer, Berlin, Allemagne (2014). | MR

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Proc. of Finite Volumes for Complex Applications V, Aussois, France. Edited by R. Eymard and J.M. Herard. Hermès (2008). | MR

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan and L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60 (2009) 1259–1288. | DOI | MR | Zbl

D. Jacqmin, Calculation of two-phase Navier−Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1999) 96–127. | DOI | MR | Zbl

D. Jacqmin, Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402 (2000) 57–88. | DOI | MR | Zbl

D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn–Hilliard–Navier−Stokes system. Interfaces Free Bound. 10 (2008) 15–43. | DOI | MR | Zbl

R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Commun. 133 (2001) 139–157. | DOI | MR | Zbl

S. Krell, Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods Partial Differ. Equ. 27 (2011) 1666–1706. | DOI | MR | Zbl

S. Krell and G. Manzini, The discrete duality finite volume method for stokes equations on three-dimensional polyhedral meshes. SIAM J. Numer. Anal. 50 (2012) 808–837. | DOI | MR | Zbl

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179 (2003) 211–228. | DOI | MR | Zbl

S. Metzger, On numerical schemes for phase-field models for electrowetting with electrolyte solutions. Proc. Appl. Math. Mech. 15 (2015) 715–718. | DOI

S. Minjeaud, An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows. J. Comput. Phys. 236 (2013) 143–156. | DOI | MR | Zbl

S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn−Hilliard/Navier−Stokes model. Numer. Methods Partial Differ. Equ. 29 (2013) 584–618. | DOI | MR | Zbl

A. Miranville and S. Zelik, Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci. 28 (2005) 709–735. | DOI | MR | Zbl

F. Nabet, Schémas volumes finis pour des problèmes multiphasiques. Ph.D. thesis, Aix-Marseille université (2014).

F. Nabet, Convergence of a finite-volume scheme for the cahn–hilliard equation with dynamic boundary conditions. IMA J. Numer. Anal. 36 (2015) 1898–1942. | DOI | MR | Zbl

F. Nabet, An error estimate for a finite-volume scheme for the Cahn−Hilliard equation with dynamic boundary conditions (2016). Preprint (2016). | HAL

J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn−Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. 185 (2006) 627–648. | DOI | MR | Zbl

T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333. | DOI | MR | Zbl

R. Racke and S. Zheng, The Cahn−Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8 (2003) 83–110. | MR | Zbl

A.J. Salgado, A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM: M2AN 47 (2013) 743–769, 5. | DOI | Numdam | MR | Zbl

J. Shen, X. Yang and H. Yu, Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284 (2015) 617–630. | DOI | MR | Zbl

X-.P. Wang, T. Qian and P. Sheng, Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605 (2008) 59–78. | DOI | MR | Zbl

H. Wu and S. Zheng, Convergence to equilibrium for the Cahn−Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204 (2004) 511–531. | DOI | MR | Zbl

Cité par Sources :