A second order time-stepping scheme for parabolic interface problems with moving interfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1539-1560.

We present a second order time-stepping scheme for parabolic problems on moving domains and interfaces. The diffusion coefficient is discontinuous and jumps across an interior interface. This causes the solution to have discontinuous derivatives in space and time. Without special treatment of the interface, both spatial and temporal discretization will be sub-optimal. For such problems, we develop a time-stepping method, based on a cG(1) Eulerian space-time Galerkin approach. We show −both analytically and numerically− second order convergence in time. Key to gaining the optimal order of convergence is the use of space-time test- and trial-functions, that are aligned with the moving interface. Possible applications are multiphase flow or fluid-structure interaction problems.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016072
Classification : 65M60, 65M12
Mots clés : Space-time finite elements, time stepping, moving interfaces, a priori error analysis
Frei, Stefan 1 ; Richter, Thomas 2

1 Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
2 Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
@article{M2AN_2017__51_4_1539_0,
     author = {Frei, Stefan and Richter, Thomas},
     title = {A second order time-stepping scheme for parabolic interface problems with moving interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1539--1560},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016072},
     mrnumber = {3702424},
     zbl = {1379.65076},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016072/}
}
TY  - JOUR
AU  - Frei, Stefan
AU  - Richter, Thomas
TI  - A second order time-stepping scheme for parabolic interface problems with moving interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1539
EP  - 1560
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016072/
DO  - 10.1051/m2an/2016072
LA  - en
ID  - M2AN_2017__51_4_1539_0
ER  - 
%0 Journal Article
%A Frei, Stefan
%A Richter, Thomas
%T A second order time-stepping scheme for parabolic interface problems with moving interfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1539-1560
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016072/
%R 10.1051/m2an/2016072
%G en
%F M2AN_2017__51_4_1539_0
Frei, Stefan; Richter, Thomas. A second order time-stepping scheme for parabolic interface problems with moving interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1539-1560. doi : 10.1051/m2an/2016072. http://www.numdam.org/articles/10.1051/m2an/2016072/

A. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comput. 52 (1989) 255–274. | DOI | MR | Zbl

I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing 5 (1970) 207–213. | DOI | MR | Zbl

E. Bänsch and S. Weller, Fully implicit time discretization for a free surface flow problem. Proc. Appl. Math. Mech. 11 (2011) 619–620. | DOI

P. Bastian and C. Engwer, An unfitted finite element method using discontinuous Galerkin, Int. J. Numer. Methods Eng. 79 (2009) 1557–1576. | DOI | MR | Zbl

J. Bramble and J. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. | DOI | MR | Zbl

R. Codina, G. Houzeaux, H. Coppola-Owen and J. Baiges, The fixed-mesh ale approach for the numerical approximation of flows in moving domains. J. Comput. Phys. 228 (2009) 1591–1611. | DOI | MR | Zbl

G.-H. Cottet, E. Maitre and T. Milcent, An Eulerian method for fluid-structure coupling with biophysical applications, in ECCOMAS CFD 2006: Proc. of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands (2006).

T. Dunne and R. Rannacher, Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation, in Fluid-structure interaction. Springer (2006) 110–145. | MR

R. Dziri and J.-P. Zolésio, Eulerian derivative for non-cylindrical functionals, in Vol. 216 of Shape Optimization and Optimal Design, edited by J. Cagnol, M.P. Polis and J.-P. Zolésio (2001) 87–108. | MR | Zbl

K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational differential equations. Cambridge Univ. Press (1996). | MR | Zbl

S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions. Ph.D. thesis, Universität Heidelberg (2016).

S. Frei and T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52 (2014) 2315–2334. | DOI | MR | Zbl

T.-P. Fries and A. Zilian, On time integration in the XFEM. Int. J. Numer. Methods Eng. 79 (2009) 69–93. | DOI | MR | Zbl

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | DOI | MR | Zbl

C. Lehrenfeld and A. Reusken, Analysis of a Nitsche XFEM DG discretization for a class of two-phase mass transport problems. SIAM J. Numer. Anal. 51 (2013) 958–983. | DOI | MR | Zbl

N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. | DOI | MR | Zbl

T. Richter, Finite Elements for Fluid-Structure Interactions. Springer (2016), in preparation. | MR

Y. Sudhakar and W.A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. 258 (2013) 39–54. | DOI | MR | Zbl

P. Zunino, Analysis of backward Euler/extended finite element discretization of parabolic problems with moving interfaces. Comput. Methods Appl. Mech. Eng. 258 (2013) 152–165. | DOI | MR | Zbl

Cité par Sources :