A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1473-1500.

We propose and analyze a new discretization technique for a linear-quadratic optimal control problem involving the fractional powers of a symmetric and uniformly elliptic second order operator; control constraints are considered. Since these fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuniformly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide an a priori error analysis that relies on derived Hölder and Sobolev regularity estimates for the optimal variables and error estimates for a scheme that approximates fractional diffusion on curved domains; the latter being an extension of previous available results. The analysis is valid in any dimension. We conclude by presenting some numerical experiments that validate the derived error estimates.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016065
Classification : 35R11, 35J70, 49J20, 49M25, 65N12, 65N30
Mots clés : Linear-quadratic optimal control problem, fractional diffusion, finite elements, anisotropic estimates, curved domains
Otárola, Enrique 1

1 Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile
@article{M2AN_2017__51_4_1473_0,
     author = {Ot\'arola, Enrique},
     title = {A piecewise linear {FEM} for an optimal control problem of fractional operators: error analysis on curved domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1473--1500},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016065},
     zbl = {1377.49030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016065/}
}
TY  - JOUR
AU  - Otárola, Enrique
TI  - A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1473
EP  - 1500
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016065/
DO  - 10.1051/m2an/2016065
LA  - en
ID  - M2AN_2017__51_4_1473_0
ER  - 
%0 Journal Article
%A Otárola, Enrique
%T A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1473-1500
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016065/
%R 10.1051/m2an/2016065
%G en
%F M2AN_2017__51_4_1473_0
Otárola, Enrique. A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1473-1500. doi : 10.1051/m2an/2016065. http://www.numdam.org/articles/10.1051/m2an/2016065/

S. Abe and S. Thurner, Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Physica A 356 (2005) 403–407. | DOI

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55 of National Bureau of Standards Applied Mathematics Series (1964). | Zbl

G Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. | DOI | Zbl

M. Allen, E. Lindgren and A. Petrosyan, The two-phase fractional obstacle problem. SIAM J. Math. Anal. 47 (2015) 1879–1905. | DOI | Zbl

H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53 (2015) 3432–3456. | DOI | Zbl

H. Antil, E. Otárola, and A.J. Salgado, A Space-Time Fractional Optimal Control Problem: Analysis and Discretization. SIAM J. Control Optim. 54 (2016) 1295–1328. | DOI | Zbl

T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional calculus with applications in mechanics. Mechanical Engineering and Solid Mechanics Series. ISTE, London. John Wiley & Sons, Inc., Hoboken, NJ (2014). | Zbl

B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator. J. Differ. Eqs. 252 (2012) 6133–6162. | DOI | Zbl

R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007) 349–367. | DOI | Zbl

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb., Sect. A 143 (2013) 39–71. | DOI | Zbl

S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008). | Zbl

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Eqs. 32 (2007) 1245–1260. | DOI | MR | Zbl

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171 (2010) 1903–1930. | DOI | MR | Zbl

L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 767–807. | DOI | Numdam | MR | Zbl

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Eqs. 36 (2011) 1353–1384. | DOI | MR | Zbl

L Chen, ifem: an integrated finite element methods package in matlab. Technical report, Technical Report, University of California at Irvine (2009).

W. Chen, A speculative study of 2/3-order fractional laplacian modeling of turbulence: Some thoughts and conjectures. Chaos 16 (2006) 1–11. | DOI | Zbl

Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. | DOI | MR | Zbl

P.G. Ciarlet, The finite element method for elliptic problems. Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

P.G. Ciarlet, Basic error estimates for elliptic problems. In Vol. II of Handbook of numerical analysis, II. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl

P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84. | Numdam | MR | Zbl

M. D’Elia and M. Gunzburger, Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control Optim. 52 (2014) 243–273. | DOI | MR | Zbl

M. D’Elia and M. Gunzburger, Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl. Math. Optim. 73 (2016) 227–249. | DOI | MR | Zbl

J. Duoandikoetxea, Fourier analysis. American Mathematical Society (2001). | MR | Zbl

R.G. Durán and A.L. Lombardi, Error estimates on anisotropic Q 1 elements for functions in weighted Sobolev spaces. Math. Comp. 74 (2005) 1679–1706. | DOI | MR | Zbl

A. Ern and J.-L. Guermond, Theory and practice of finite elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl

E.B. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Eqs. 7 (1982) 77–116. | DOI | MR | Zbl

D Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad. 43 (1967) 82–86. | MR | Zbl

P. Gatto and J.S. Hesthaven, Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising. J. Sci. Comput. 65 (2015) 249–270. | DOI | MR | Zbl

V. Gol’Dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl

P. Grisvard, Elliptic problems in nonsmooth domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). | MR | Zbl

E. Hernández and R. Rodríguez, Finite element approximation of spectral problems with Neumann boundary conditions on curved domains. Math. Comp. 72 (2003) 1099–1115. | DOI | MR | Zbl

Y. Huang and A. Oberman, Numerical methods for the fractional laplacian: A finite difference-quadrature approach. SIAM J. Numer. Anal. 52 (2014) 3056–3084. | DOI | MR | Zbl

M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8 (2005) 323–341. | MR | Zbl

M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006) 333–349. | MR | Zbl

R. Ishizuka, S.-H. Chong, and F. Hirata, An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach. J. Chem. Phys. 128 (2008) 034504. | DOI

A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. | MR | Zbl

S.Z. Levendorskiĭ, Pricing of the American put under Lévy processes. Int. J. Theor. Appl. Finance 7 (2004) 303–335. | DOI | MR | Zbl

J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. In Vol. I. Springer-Verlag, New York (1972). | MR | Zbl

D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part ii: Problems with control constraints. SIAM J. Control Optim. 47 (2008) 1301–1329. | DOI | MR | Zbl

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004) 970–985. | DOI | MR | Zbl

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972) 207–226. | DOI | MR | Zbl

R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction. Springer Berlin Heidelberg (2009) 409–542. | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15 (2015) 733–791. | DOI | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE Approach to Space-Time Fractional Parabolic Problems. SIAM J. Numer. Anal. 54 (2016) 848–873. | DOI | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. | DOI | MR | Zbl

R.H. Nochetto, T. Von Petersdorff and C.-S. Zhang, A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math. 116 (2010) 519–552. | DOI | MR | Zbl

E. Otárola, A PDE approach to numerical fractional diffusion. Ph.D. thesis, University of Maryland, College Park (2014). | MR

P.A. Raviart and J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983). | MR | Zbl

L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | DOI | MR | Zbl

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl

P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Eqs. 35 (2010) 2092–2122. | DOI | MR | Zbl

F. Tröltzsch, Optimal Control of Partial Differential Equations. AMS (2010). | MR | Zbl

B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces. Springer (2000). | MR | Zbl

Q. Yang, I. Turner, F. Liu and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33 (2011) 1159–1180. | DOI | MR | Zbl

Cité par Sources :