In the present work, we show that the Implicit-Explicit Lagrange-projection scheme applied to the isentropic Euler equations, presented in Coquel et al.’s paper (Math. Comp. 79 (2010) 1493–1533), is asymptotic preserving regarding the Mach number,
Accepté le :
DOI : 10.1051/m2an/2016064
Mots-clés : All-Mach number scheme, Lagrange-projection scheme, asymptotic preserving scheme, stability analysis
@article{M2AN_2017__51_4_1343_0, author = {Zakerzadeh, Hamed}, title = {On the mach-uniformity of the {Lagrange-projection} scheme}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1343--1366}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016064}, mrnumber = {3702416}, zbl = {06790780}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2016064/} }
TY - JOUR AU - Zakerzadeh, Hamed TI - On the mach-uniformity of the Lagrange-projection scheme JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1343 EP - 1366 VL - 51 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2016064/ DO - 10.1051/m2an/2016064 LA - en ID - M2AN_2017__51_4_1343_0 ER -
%0 Journal Article %A Zakerzadeh, Hamed %T On the mach-uniformity of the Lagrange-projection scheme %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1343-1366 %V 51 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2016064/ %R 10.1051/m2an/2016064 %G en %F M2AN_2017__51_4_1343_0
Zakerzadeh, Hamed. On the mach-uniformity of the Lagrange-projection scheme. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1343-1366. doi : 10.1051/m2an/2016064. https://www.numdam.org/articles/10.1051/m2an/2016064/
Splitting methods for low Mach number Euler and Navier–Stokes equations. Comput. Fluids 17 (1989) 1–12. | DOI | Zbl
, and ,G. Bispen, IMEX finite volume methods for the shallow water equations. Ph.D. thesis, Johannes Gutenberg-Universität (2015).
IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16 (2014) 307–347. | DOI | MR | Zbl
, , and ,Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. | DOI | MR | Zbl
and ,F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws: And well-balanced schemes for sources. Springer Science & Business Media (2004). | MR | Zbl
Relaxation approximation of the Euler equations. J. Math. Anal. Appl. 348 (2008) 872–893. | DOI | MR | Zbl
and ,Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput. 35 (2013) A2874–A2902. | DOI | MR | Zbl
, and ,An all-regime Lagrange-projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20 (2016) 188–233. | DOI | MR | Zbl
, and ,C. Chalons, P. Kestener, S. Koch and M. Stauffert, A large time-step and well-balanced Lagrange-projection type scheme for the shallow water equations, Preprint (2016). | arXiv | MR
On the Eulerian large eddy simulation of disperse phase flows: An asymptotic preserving scheme for small Stokes number flows. Multiscale Model. Simul. 13 (2015) 291–315. | DOI | MR | Zbl
, and ,Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. | DOI | MR | Zbl
, and ,F. Coquel, E. Godlewski and N. Seguin, Regularization and relaxation tools for interface coupling. In Proc. of XX Congresso de Ecuaciones Differenciales Y Aplicaicones, CEDYA (2007).
Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79 (2010) 1493–1533. | DOI | MR | Zbl
, , and ,An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231 (2012) 5685–5704. | DOI | MR | Zbl
, and ,Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl
, and ,Analysis of an asymptotic preserving scheme for the Euler–Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46 (2008) 1298–1322. | DOI | MR | Zbl
, and ,All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl
and ,Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. | DOI | MR | Zbl
,S. Dellacherie, J. Jung, P. Omnes and P.-A. Raviart, Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system. submitted, hal-00776629, November 2015. | MR
The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229 (2010) 5315–5338. | DOI | MR | Zbl
, and ,J. Donea, A. Huerta, J.-Ph. Ponthot and A. Rodríguez-Ferran, Arbitrary Lagrangian–Eulerian methods. John Wiley & Sons, Ltd (2004).
E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Vol. 118. Springer (1996). | MR | Zbl
R.M. Gray, Toeplitz and circulant matrices: A review. Now Publishers Inc. (2006). | Zbl
Oscillatory perturbations of the Navier–Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. | DOI | MR | Zbl
,On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. | DOI | Zbl
and ,On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | DOI | MR | Zbl
and ,An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl
, and ,H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. European Math. Soc. Publishing House (2010). | MR | Zbl
R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press, New York (1986). | MR | Zbl
Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | DOI | MR | Zbl
,Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. | DOI | MR | Zbl
,S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review. Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT), Porto Ercole. Grosseto, Italy (2010) 177–216. | MR | Zbl
The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235–276. | DOI | MR | Zbl
and ,Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | DOI | MR | Zbl
and ,Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. | DOI | MR | Zbl
and ,Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations. Adv. Appl. Math. 12 (1991) 187–214. | DOI | MR | Zbl
, and ,Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283–324. | DOI | MR | Zbl
, and ,Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88 (2001) 121–134. | DOI | MR | Zbl
and ,Finite energy solutions to the isentropic Euler equations with geometric effects. J. Math. Pures Appl. 88 (2007) 389–429. | DOI | MR | Zbl
and ,Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. | DOI | MR | Zbl
,N. Masmoudi, Examples of singular limits in hydrodynamics. In Vol. 3 of Handbook of Differential Equations: Evolutionary Equations (2007) 195–275. | MR | Zbl
Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (1999) 256–271. | DOI | MR | Zbl
,The incompressible limit of the non-isentropic Euler equations. Arch. Ratio. Mech. Anal. 158 (2001) 61–90. | DOI | MR | Zbl
and ,K. Revi Arun, M. Lukcáˇová-Medviďováand C.-D. Munz, A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) B989–B1024. | DOI | MR | Zbl
, ,On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL. J. Comput. Phys. 229 (2010) 221–232. | DOI | MR | Zbl
,A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230 (2011) 5263–5287. | DOI | MR | Zbl
,The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime. J. Comput. Phys. 228 (2009) 2918–2933. | DOI | MR | Zbl
and ,J. Schütz and S. Noelle, Flux splitting for stiff equations: A notion on stability. J. Sci. Comput. (2014) 1–19. | MR
A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11 (1975) 3–5. | DOI | MR | Zbl
,Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2 (1949) 103–122. | DOI | MR | Zbl
,H. Zakerzadeh and S. Noelle, A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws. IGPM report 449, RWTH Aachen University (2016). | MR
Cité par Sources :