The Bloch-Torrey Partial Differential Equation (PDE) can be used to model the diffusion Magnetic Resonance Imaging (dMRI) signal in biological tissue. In this paper, we derive an Anisotropic Diffusion Transmission Condition (ADTC) for the Bloch-Torrey PDE that accounts for anisotropic diffusion inside thin layers. Such diffusion occurs, for example, in the myelin sheath surrounding the axons of neurons. This ADTC can be interpreted as an asymptotic model of order two with respect to the layer thickness and accounts for water diffusion in the normal direction that is low compared to the tangential direction. We prove uniform stability of the asymptotic model with respect to the layer thickness and a mass conservation property. We also prove the theoretical quadratic accuracy of the ADTC. Finally, numerical tests validate these results and show that our model gives a better approximation of the dMRI signal than a simple transmission condition that assumes isotropic diffusion in the layers.
Mots-clés : Asymptotic expansion, Bloch-Torrey equation, anisotropic diffusion transmission condition, diffusion magnetic resonance imaging
@article{M2AN_2017__51_4_1279_0, author = {Caubet, Fabien and Haddar, Houssem and li, Jing-Rebecca and Nguyen, Van Dang}, title = {New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion {MRI}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1279--1301}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016060}, mrnumber = {3702413}, zbl = {1378.35309}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016060/} }
TY - JOUR AU - Caubet, Fabien AU - Haddar, Houssem AU - li, Jing-Rebecca AU - Nguyen, Van Dang TI - New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1279 EP - 1301 VL - 51 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016060/ DO - 10.1051/m2an/2016060 LA - en ID - M2AN_2017__51_4_1279_0 ER -
%0 Journal Article %A Caubet, Fabien %A Haddar, Houssem %A li, Jing-Rebecca %A Nguyen, Van Dang %T New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1279-1301 %V 51 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016060/ %R 10.1051/m2an/2016060 %G en %F M2AN_2017__51_4_1279_0
Caubet, Fabien; Haddar, Houssem; li, Jing-Rebecca; Nguyen, Van Dang. New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1279-1301. doi : 10.1051/m2an/2016060. http://www.numdam.org/articles/10.1051/m2an/2016060/
Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147 (1998) 187–218. | DOI | MR | Zbl
, and ,Generalized impedance boundary conditions for thin dielectric coatings with variable thickness. Wave Motion 48 (2011) 681–700. | DOI | MR | Zbl
, and ,New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52 (2004) 965–978. | DOI
, , and ,Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 5 (2013) 427–440. | DOI
, and ,The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15 (2002) 435–455. | DOI
,The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664–1693. | DOI | MR | Zbl
and ,High b-value q-space diffusion MRI in myelin-deficient rat spinal cords. Magn. Reson. Imaging 24 (2006) 161–166. | DOI
, and ,High-order accurate thin layer approximations for time-domain electromagnetics, Part II: transmission layers. J. Comput. Appl. Math. 234 (2010) 2587–2608. | DOI | MR | Zbl
, and ,A macroscopic model including membrane exchange for diffusion MRI. SIAM J. Appl. Math. 74 (2014) 516–546. | DOI | MR | Zbl
, and ,Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. 98 (2012) 28–71. | DOI | MR | Zbl
, and ,Thin Layer Models for Electromagnetism. Commun. Comput. Phys. 16 (2014) 213–238. | DOI
, and ,J. Farrell, Q-space Diffusion Imaging of Axon and Myelin Damage in the Human and Rat Spinal Cord. Johns Hopkins University (2009).
Measuring myelin repair and axonal loss with diffusion tensor imaging. Am. J. Neuroradiology 32 (2011) 85–91. | DOI
, , , , , , , and ,Effective boundary conditions for thin ferromagnetic coatings. Asymptotic analysis of the 1D model. Asymptot. Anal. 2 (2001) 127–160. | MR | Zbl
and ,Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comput. Appl. Math. 143 (2002) 201–236. | DOI | MR | Zbl
and ,Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15 (2005) 1273–1300. | DOI | MR | Zbl
, and ,Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: The case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. | DOI | MR | Zbl
, and ,Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases, a review. NMR Biomed. 15 (2002) 570–577. | DOI
and ,On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170 (2001) 96–122. | DOI | MR | Zbl
and ,H. Johansen-Berg and T. Behrens, Diffusion MRI: From quantitative measurement to in vivo neuroanatomy. Elsevier Science (2013).
D. Jones, Diffusion MRI: theory, methods, and applications. Oxford University Press, USA (2010).
L.J. Lanyon, Neuroimaging – Methods, in: Diffusion tensor imaging: structural connectivity insights, limitations and future directions. Edited by Peter Bright. InTech (2012).
Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage 61 (2012) 324–34. | DOI
and ,The wet mind: water and functional neuroimaging. Phys. Med. Biol. 52 (2007).
,Quelques remarques sur les équations différentielles opérationnelles du ordre. Rend. Sem. Mat. Univ. Padova 33 (1963) 213–225. | Numdam | MR | Zbl
,J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Translated from the French by P. Kenneth. Die Grundl. Math. Wiss., Band 181. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl
Diffusion imaging of brain tumors. NMR Biomed. 23 (2010) 849–864. | DOI
, and ,A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging. J. Comput. Phys. 263 (2014) 283–302. | DOI | MR | Zbl
, , and ,Asymptotic expansion of steady- state potential in a high contrast medium with a thin resistive layer. Appl. Math. Comput. 221 (2013) 48–65. | MR | Zbl
and ,Generalized impedance boundary condition at high frequency for a domain with thin layer: the circular case. Appl. Anal. 86 (2007) 1549–1568. | DOI | MR | Zbl
,R. Quarles, W. Macklin and P. Morell, Basic neurochemistry: molecular, cellular and medical aspects. In: Myelin formation, structure and biochemistry. Elsevier Science (2006).
TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. Art. 4 (2015) 11, 36. | MR | Zbl
,RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math. 88 (1998) 315–326. | DOI | MR | Zbl
, and ,Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42 (1965) 288–292. | DOI
and ,Bloch equations with diffusion terms. Phys. Rev. Online Archive (Prola) 104 (1956) 563–565.
,Convergence properties of the Runge−Kutta−Chebyshev method. Numer. Math. 57 (1990) 157–178. | DOI | MR | Zbl
, and ,Cité par Sources :