In the present paper we develop a new family of Virtual Elements for the Stokes problem on polygonal meshes. By a proper choice of the Virtual space of velocities and the associated degrees of freedom, we can guarantee that the final discrete velocity is pointwise divergence-free, and not only in a relaxed (projected) sense, as it happens for more standard elements. Moreover, we show that the discrete problem is immediately equivalent to a reduced problem with fewer degrees of freedom, thus yielding a very efficient scheme. We provide a rigorous error analysis of the method and several numerical tests, including a comparison with a different Virtual Element choice.
Mots-clés : Virtual element method, polygonal meshes, Stokes problem, divergence free approximation
@article{M2AN_2017__51_2_509_0, author = {Beir\~ao da Veiga, Lourenco and Lovadina, Carlo and Vacca, Giuseppe}, title = {Divergence free virtual elements for the stokes problem on polygonal meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {509--535}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016032}, mrnumber = {3626409}, zbl = {1398.76094}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016032/} }
TY - JOUR AU - Beirão da Veiga, Lourenco AU - Lovadina, Carlo AU - Vacca, Giuseppe TI - Divergence free virtual elements for the stokes problem on polygonal meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 509 EP - 535 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016032/ DO - 10.1051/m2an/2016032 LA - en ID - M2AN_2017__51_2_509_0 ER -
%0 Journal Article %A Beirão da Veiga, Lourenco %A Lovadina, Carlo %A Vacca, Giuseppe %T Divergence free virtual elements for the stokes problem on polygonal meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 509-535 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016032/ %R 10.1051/m2an/2016032 %G en %F M2AN_2017__51_2_509_0
Beirão da Veiga, Lourenco; Lovadina, Carlo; Vacca, Giuseppe. Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 509-535. doi : 10.1051/m2an/2016032. http://www.numdam.org/articles/10.1051/m2an/2016032/
Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439. | DOI | MR | Zbl
, and ,A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, , and ,A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl
and ,Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215–7232. | DOI | MR | Zbl
, , and ,Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | DOI | MR | Zbl
, and ,Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,The Hitchhiker’s Guide to the Virtual Element Method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl
, , and ,L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Modeling, Simulation and Applications. Springer (2014). | MR | Zbl
and -conforming VEM. Numer. Math. (2015) 1–30.
, , and ,A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. Preprint (2015). | arXiv | Numdam | MR
The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Engrg. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Engrg. 97 (2014) 1–31. | DOI | MR | Zbl
,D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl
Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl
and ,S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). | MR | Zbl
Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253 (2013) 455–462. | DOI | MR | Zbl
and ,Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl
, and ,Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | DOI | Numdam | MR | Zbl
, and ,Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,Isogeometric analysis: Stable elements for the 2d stokes equation. Int. J. Numer. Methods Fluids 65 (2011) 1407–1422. | DOI | MR | Zbl
, and ,hp-version discontinuous galerkin methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl
, and ,Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math. Comp. 75 (2006) 533–563. | DOI | MR | Zbl
, and ,Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40 (2002) 319–343. | DOI | MR | Zbl
, , and ,Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3184–3204. | DOI | MR | Zbl
, and ,An equal-order DG method for the incompressible Navier–Stokes equations. J. Sci. Comput. 40 (2009) 188–210. | DOI | MR | Zbl
, and ,On the Inequalities of Babuška–Aziz, Friedrichs and Horgan–Payne. Arch. Ration. Mech. Anal. 217 (2015) 873–898. | DOI | MR | Zbl
and ,A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. | DOI | MR | Zbl
and ,An elementary proof of the continuity from L20(Ω) to H01(Ω)n of Bogovskii’s right inverse of the divergence. Rev. Un. Mat. Argentina 53 (2012) 59–78. | MR | Zbl
,M. Fortin and F. Brezzi, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR | Zbl
On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34 (2014) 1489–1508. | DOI | MR | Zbl
and ,Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp. 83 (2014) 15–36. | DOI | MR | Zbl
and ,A hybridized finite element method for the Stokes problem. Comput. Math. Appl. 68 (2014) 2222–2232. | DOI | MR | Zbl
, and ,Discontinuous galerkin and mimetic finite difference methods for coupled stokes–darcy flows on polygonal and polyhedral grids. Numer. Math. 126 (2013) 321–360. | DOI | MR | Zbl
, and ,Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. | DOI | MR | Zbl
, and ,A virtual element method for the steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl
, and ,Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47 (2011) 535–554. | DOI | MR | Zbl
and ,Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping. Int. J. Numer. Meth. Eng. 80 (2009) 103–134. | DOI | MR | Zbl
, and ,Interpolation error estimates for mean value coordinates over convex polygons. Adv. Comput. Math. 39 (2013) 327–347. | DOI | MR | Zbl
, and ,Higher order bem-based fem on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl
and ,Conforming polygonal finite elements. Int. J. Numer. Meth. Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,Addressing integration error for polygonal finite elements through polynomial projections: a patch test connection. Math. Models Methods Appl. Sci. 24 (2014) 1701–1727. | DOI | MR | Zbl
and ,Polygonal finite elements for topology optimization: a unifying paradigm. Int. J. Numer. Meth. Eng. 82 (2010) 671–698. | DOI | Zbl
, , and ,Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidisc Optimiz. 45 (2012) 309–328. | DOI | MR | Zbl
, , and ,Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Eq. 31 (2015) 2110–2134. | DOI | MR | Zbl
and ,Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | MR | Zbl
and ,Barycentric coordinates for polytopes. Comput. Math. Appl. 61 (2011) 3319–3321. | DOI | MR | Zbl
,An edge-based method for the incompressible navier-stokes equations on polygonal meshes. J. Comput. Phys. 169 (2001) 24–43. | DOI | Zbl
and ,Cité par Sources :