Solutions of certain finite-difference schemes for singularly-perturbed evolutionary PDEs converge as the perturbation parameter and/or the discretization parameters tend to zero. Under suitable hypotheses a sharp convergence rate of order one-half in the time step, uniform in the perturbation parameter, is obtained.
Accepté le :
DOI : 10.1051/m2an/2016029
Mots clés : Rate of convergence, discrete Sobolev spaces, singular limits
@article{M2AN_2017__51_2_587_0, author = {Even-Dar Mandel, L. and Schochet, S.}, title = {Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary {PDEs}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {587--614}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016029}, mrnumber = {3626412}, zbl = {1368.65158}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016029/} }
TY - JOUR AU - Even-Dar Mandel, L. AU - Schochet, S. TI - Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 587 EP - 614 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016029/ DO - 10.1051/m2an/2016029 LA - en ID - M2AN_2017__51_2_587_0 ER -
%0 Journal Article %A Even-Dar Mandel, L. %A Schochet, S. %T Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 587-614 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016029/ %R 10.1051/m2an/2016029 %G en %F M2AN_2017__51_2_587_0
Even-Dar Mandel, L.; Schochet, S. Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 587-614. doi : 10.1051/m2an/2016029. http://www.numdam.org/articles/10.1051/m2an/2016029/
The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data. Nonlin. 24 (2011) 2745–2761. | DOI | MR | Zbl
and ,Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704–718. | DOI | MR | Zbl
and ,Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. | DOI | MR | Zbl
and ,Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport. SIAM J. Math. Anal. 45 (2013) 915–933. | DOI | MR | Zbl
, and ,Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun. Partial Differ. Eq. 25 (2000) 1099–1113. | DOI | MR | Zbl
and ,P.J. Davis, Interpolation and approximation. Dover Publications Inc., New York (1975). | MR | Zbl
Peano’s kernel theorem for vector-valued functions and some applications. Numer. Funct. Anal. Optim. 17 (1996) 57–64. | DOI | MR | Zbl
and ,L. Even-Dar Mandel and S. Schochet, Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular limits of nonlinear PDEs. To appear in ESAIM: M2AN (2017). | DOI | Numdam | MR
G.B. Folland, Introduction to partial differential equations. Princeton University Press, Princeton, N.J. (1976). | MR | Zbl
G.B. Folland, Fourier analysis and its applications. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1992). | MR | Zbl
Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989–1054. | DOI | MR | Zbl
,Pseudo-differential energy estimates of singular perturbations. Comm. Pure Appl. Math. 50 (1997) 821–865. | DOI | MR | Zbl
,B. Gustafsson and H.O. Kreiss, J. Oliger, Time dependent problems and difference methods. Pure and Applied Mathematics. John Wiley & Sons Inc., New York (1995). | MR | Zbl
T. Kato, A short introduction to perturbation theory for linear operators. Springer-Verlag, New York (1982). | MR | Zbl
Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481–524. | DOI | MR | Zbl
and ,Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: M2AN 39 (2005) 537–559. | DOI | Numdam | MR | Zbl
,A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Vol. 53 of Appl. Math. Sci. Springer-Verlag, New York (1984). | MR | Zbl
V.S. Ryaben'kii, S.V. Tsynkov, A theoretical introduction to numerical analysis. Chapman & Hall/CRC, Boca Raton, FL (2007). | MR | Zbl
The incompressible limit in nonlinear elasticity. Comm. Math. Phys. 102 (1985) 207–215. | DOI | MR | Zbl
,Symmetric hyperbolic systems with a large parameter. Comm. Partial Differ. Eq. 11 (1986) 1627–1651. | DOI | MR | Zbl
,Fast singular limits of hyperbolic PDEs. J. Differ. Eq. 114 (1994) 476–512. | DOI | MR | Zbl
,The mathematical theory of low Mach number flows. ESAIM: M2AN 39 (2005) 441–458. | DOI | Numdam | MR | Zbl
,S. Schochet, Convergence of finite-volume schemes to smooth solutions of multidimensional hyperbolic systems. In preparation (2016).
The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106 (1986) 569–580. | DOI | MR | Zbl
and ,Accurate partial difference methods. II. Non-linear problems. Numer. Math. 6 (1964) 37–46. | DOI | MR | Zbl
,J.C. Strikwerda, Finite difference schemes and partial differential equations. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1989). | MR | Zbl
M.E. Taylor, Partial differential equations, III. Vol. 117 of Appl. Math. Sci. Springer-Verlag, New York (1997). | MR | Zbl
J.W. Thomas, Numerical partial differential equations: finite difference methods. Vol. 22 of Texts Appl. Math. Springer-Verlag, New York (1995). | MR | Zbl
Convergence of difference approximations for quasilinear hyperbolic systems. Hiroshima Math. J. 11 (1981) 465–491. | DOI | MR | Zbl
,Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech. 16 (2014) 771–786. | DOI | MR | Zbl
and ,Cité par Sources :