Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 443-465.

The focus is on a model reduction framework for parameterized elliptic eigenvalue problems by a reduced basis method. In contrast to the standard single output case, one is interested in approximating several outputs simultaneously, namely a certain number of the smallest eigenvalues. For a fast and reliable evaluation of these input-output relations, we analyze a posteriori error estimators for eigenvalues. Moreover, we present different greedy strategies and study systematically their performance. Special attention needs to be paid to multiple eigenvalues whose appearance is parameter-dependent. Our methods are of particular interest for applications in vibro-acoustics.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016025
Classification : 35B30, 65N15, 65N25, 65N30, 74S10
Mots-clés : A posteriori error estimation, eigenvalue problem, finite element method, model reduction, multiple eigenvalues, parameter-dependent partial differential equation, reduced basis method
Horger, Thomas 1 ; Wohlmuth, Barbara 1 ; Dickopf, Thomas 1

1 Lehrstuhl für Numerische Mathematik, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany.
@article{M2AN_2017__51_2_443_0,
     author = {Horger, Thomas and Wohlmuth, Barbara and Dickopf, Thomas},
     title = {Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {443--465},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016025},
     mrnumber = {3626406},
     zbl = {1362.65121},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016025/}
}
TY  - JOUR
AU  - Horger, Thomas
AU  - Wohlmuth, Barbara
AU  - Dickopf, Thomas
TI  - Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 443
EP  - 465
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016025/
DO  - 10.1051/m2an/2016025
LA  - en
ID  - M2AN_2017__51_2_443_0
ER  - 
%0 Journal Article
%A Horger, Thomas
%A Wohlmuth, Barbara
%A Dickopf, Thomas
%T Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 443-465
%V 51
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016025/
%R 10.1051/m2an/2016025
%G en
%F M2AN_2017__51_2_443_0
Horger, Thomas; Wohlmuth, Barbara; Dickopf, Thomas. Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 443-465. doi : 10.1051/m2an/2016025. http://www.numdam.org/articles/10.1051/m2an/2016025/

I. Babuška and J. Osborn, Finite Element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989) 275–297. | DOI | MR | Zbl

I. Babuška and J. Osborn, Eigenvalue problems, in vol. 2 of Handbook of Numerical Analysis, edited by P. Ciarlet and J. Lions. (1991) 641–787. | MR | Zbl

I. Babuška, B. Guo and J. Osborn, Regularity and numerical solution of eigenvalue problems with piecewise analytic data. SIAM J. Numer. Anal. 26 (1989) 1534–1560. | DOI | MR | Zbl

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. | DOI | MR | Zbl

A. Buffa, Y. Maday, A.T. Patera, C. Prud’Homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. | DOI | Numdam | MR | Zbl

E. Cancès, V. Ehrlacher and T. Lelièvre, Greedy algorithms for high-dimensional eigenvalue problems. Constructive Approximation 40 (2014) 387–423. | DOI | MR | Zbl

W. Dahmen, C. Plesken and G. Welper, Double greedy algorithms: Reduced basis methods for transport dominated problems. ESAIM: M2AN 48 (2014) 623–663. | DOI | Numdam | MR | Zbl

R. Devore, G. Petrova and P. Wojtaszczyk,Greedy algorithms for reduced bases in banach spaces. Constructive Approximation 37 (2013) 455–466. | DOI | MR | Zbl

M. Drohmann, B. Haasdonk and M. Ohlberger, Adaptive reduced basis methods for nonlinear convection–diffusion equations. Finite Volumes for Complex Applications VI Problems & Perspectives 4 (2011) 369–377. | DOI | MR | Zbl

M. Drohmann, B. Haasdonk, S. Kaulmann and M. Ohlberger, A software framework for reduced basis methods using DUNE-RB and RBmatlab. Advances in DUNE (2012) 77–88.

H. Elman and Q. Liao, Reduced basis collocation methods for partial differential equations with random coefficients. SIAM/ASA J. Uncertainty Quantification 1 (2013) 192–217. | DOI | MR | Zbl

I. Fumagalli, A. Manzoni, N. Parolini and M. Verani, Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems. ESAIM: M2AN 50 (2016) 1857–1885. | DOI | Numdam | MR | Zbl

S. Glas and K. Urban, On non-coercive variational inequalities. SIAM J. Numer. Anal. 52 (2014) 2250–2271. | DOI | MR | Zbl

N. Gräbner, S. Quraishi, C. Schröder, V. Mehrmann and U. von Wagner, New numerical methods for the complex eigenvalue analysis of disk brake squeal, in EuroBrake 2014 Conference Proceedings (2014).

M. Grepl and A. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN 39 (2005) 157–181. | DOI | Numdam | MR | Zbl

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN 42 (2008) 277–302. | DOI | Numdam | MR | Zbl

B. Haasdonk, J. Salomon and B. Wohlmuth, A reduced basis method for parametrized variational inequalities. SIAM J. Math. Anal. 50 (2012) 2656–2676. | MR | Zbl

T. Horger, S. Kollmannsberger, F. Frischmann, E. Rank and B. Wohlmuth, A new mortar formulation for modeling elastomer bedded structures with modal-analysis in 3D. Adv. Model. Simul. Eng. Sci. 2 (2014) 18. | DOI

D. Huynh, G. Rozza, S. Sen and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci., Paris, Sér. I 345 (2007) 473–478. | DOI | MR | Zbl

L. Iapichino, A. Quarteroni, G. Rozza and S. Volkwein, Reduced basis method for the stokes equations in decomposable domains using greedy optimization. ECMI 2014 (2014) 1–7.

M. Kahlbacher and S. Volkwein, Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discussiones Mathematicae: Differential Inclusions, Control and Optimization 27 (2007) 95–117. | MR | Zbl

R. Lehoucq, D. Sorensen and C. Yang, Arpack users guide: Solution of large-scale eigenvalue problems by implicitely restarted arnoldi methods. SIAM (1998). | MR | Zbl

A. Lovgren, Y. Maday and E. Ronquist, A reduced basis element method for the steady stokes problem. ESAIM: M2AN 40 (2006) 529-552. | DOI | Numdam | MR | Zbl

L. Machiels, Y. Maday, I. Oliveira, A. Patera and D. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci., Paris, Sér. I 331 (2000) 153–158. | DOI | MR | Zbl

Y. Maday, A. Patera and J. Peraire, A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem. C. R. Acad. Sci., Paris, Sér. I 328 (1999) 823–828. | DOI | MR | Zbl

Y. Maday, A. Patera and G. Turinici, Global a priori convergence theory for reduced basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci., Paris, Ser. I 335 (2002) 289–294. | DOI | MR | Zbl

Y. Maday, A. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. | DOI | MR | Zbl

A. Noor and J. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455–462. | DOI

A. Patera and G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Version 1.0, Copyright MIT 2006–2007.

G. Pau, Reduced-basis method for band structure calculations. Phys. Rev. E 76 (2007) 046–704.

G. Pau, Reduced Basis Method for Quantum Models of Crystalline Solids. Ph. D. thesis, Massachusetts Institute of Technology (2007).

G. Pau, Reduced basis method for simulation of nanodevices. Phys. Rev. B 78 (2008) 155–425.

A. Quarteroni, Numerical Models for Differential Problems, Vol. 8 of MS&A. Springer, Milan, 2nd edition (2014). | MR | Zbl

A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations. An Introduction. Springer (2015). | MR | Zbl

D. Rovas, L. Machiels and Y. Maday, Reduced basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423–445. | DOI | MR | Zbl

G. Rozza and K. Veroy, On the stability of the reduced basis method for stokes equations in parametrized domains. Comput. Methods. Appl. Mech. Engrg. 196 (2007) 1244–1260. | DOI | MR | Zbl

G. Rozza, D. Huynh and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. | DOI | MR | Zbl

G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125 (2013) 115–152. | DOI | MR | Zbl

K. Urban and A.T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. | DOI | MR | Zbl

K. Urban and B. Wieland, Affine decompositions of parametric stochastic processes for application within reduced basis methods, in 7th Vienna International Conference on Mathematical Modelling, MATHMOD 2012, Vienna (2012) 15–17.

K. Urban, S. Volkwein and O. Zeeb, Greedy sampling using nonlinear optimization, in Vol. 9 of Reduced Order Methods for Modeling and Computational Reductions (2014) 137–157. | MR

S. Vallaghe, D.P. Huynh, D.J. Knezevic, T.L. Nguyen and A.T. Patera, Component-based reduced basis for parametrized symmetric eigenproblems. Adv. Model. Simul. Eng. Sci. 2 (2015). | DOI

K. Veroy, Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Applications. Ph. D. thesis, Massachusetts Institute of Technology (2003).

M. Yano, A minimum-residual mixed reduced basis method: Exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: M2AN 50 (2016) 163–185. | DOI | Numdam | MR | Zbl

L. Zanon and K. Veroy-Grepl, The reduced basis method for an elastic buckling problem. PAMM, Proc. Appl. Math. Mech. 13 (2013) 439–440. | DOI

Cité par Sources :