This paper introduces new mixed finite element methods (FEMs) of degree 1 for the equations of linear elasticity and the Stokes equations based on Helmholtz decompositions. These FEMs are robust with respect to the incompressible limit and also allow for mixed boundary conditions. Adaptive algorithms driven by efficient and reliable residual-based error estimators are introduced and proved to converge with optimal rate in the case of the Stokes equations with pure Dirichlet boundary.
Accepté le :
DOI : 10.1051/m2an/2016024
Mots-clés : Linear elasticity, Stokes equations, non-conforming FEM, Helmholtz decomposition, mixed FEM, adaptive FEM, optimality
@article{M2AN_2017__51_2_399_0, author = {Schedensack, Mira}, title = {Mixed finite element methods for linear elasticity and the {Stokes} equations based on the {Helmholtz} decomposition}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {399--425}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016024}, mrnumber = {3626404}, zbl = {1398.76125}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016024/} }
TY - JOUR AU - Schedensack, Mira TI - Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 399 EP - 425 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016024/ DO - 10.1051/m2an/2016024 LA - en ID - M2AN_2017__51_2_399_0 ER -
%0 Journal Article %A Schedensack, Mira %T Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 399-425 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016024/ %R 10.1051/m2an/2016024 %G en %F M2AN_2017__51_2_399_0
Schedensack, Mira. Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 399-425. doi : 10.1051/m2an/2016024. http://www.numdam.org/articles/10.1051/m2an/2016024/
PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. | DOI | MR | Zbl
, andMixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. | DOI | MR | Zbl
and ,A stable finite element for the Stokes equations. Calcolo 21 (1985) 337–344. | DOI | MR | Zbl
, and ,Finite elements for symmetric tensors in three dimensions. Math. Comp. 77 (2008) 1229–1251. | DOI | MR | Zbl
, and ,An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40 (2002) 1207–1229. | DOI | MR | Zbl
, and ,Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49 (2011) 970–991. | DOI | MR | Zbl
and ,Fast computation in adaptive tree approximation. Numer. Math. 97 (2004) 193–217. | DOI | MR | Zbl
and ,Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl
, and ,D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer Verlag, New York, Berlin, Heidelberg (2008). | Zbl
D. Braess, Finite Elements. 3rd edition. Cambridge University Press, Cambridge (2007). | MR | Zbl
Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321–338. | DOI | MR | Zbl
and ,On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974) 129–151. | Numdam | MR | Zbl
,F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl
A unifying theory of a posteriori finite element error control. Numer. Math. 100 (2005) 617–637. | DOI | MR | Zbl
,A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. | DOI | MR | Zbl
and ,C. Carstensen and H. Rabus, Axioms of adaptivity for separate marking. Preprint (2016). | arXiv | MR
Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. 35 (2014) 1591–1621. | DOI | MR | Zbl
and ,Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal. 51 (2013) 1715–1734. | DOI | MR | Zbl
, and ,Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math. 123 (2013) 291–308. | DOI | MR | Zbl
, and ,Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Operationnelle 9 (1975) 77–84. | Numdam | MR | Zbl
,Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973) 33–75. | Numdam | MR | Zbl
and ,Nonconforming finite elements for the Stokes problem. Math. Comput. 52 (1989) 437–456. | DOI | MR | Zbl
and ,A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505–520. | DOI | MR | Zbl
and ,T. Gantumur, Optimal convergence rates for an adaptive mixed finite element method for the Stokes problem. Preprint (2014). | arXiv
V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl
Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15–36. | DOI | MR | Zbl
and ,Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem. J. Sci. Comput. 55 (2013) 125–148. | DOI | MR | Zbl
and ,A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195–212. | DOI | MR | Zbl
and ,Instance optimal Crouzeix–Raviart adaptive finite element methods for the Poisson and Stokes problems. IMA J. Numer. Anal. 36 (2015) 593–617. | DOI | MR | Zbl
and ,The triangular equilibrium element in the solution of plate bending problems. Aeronaut.Quart. 19 (1968) 149–169. | DOI
,H. Rabus, On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples. Ph. D. thesis, Humboldt-Universität zu Berlin (2014).
P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Springer, Berlin (1977) 292–315. | MR | Zbl
M. Schedensack, A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics. Ph. D. thesis, Humboldt-Universität zu Berlin (2015).
A new discretization for th-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal. 54 (2016) 2138–2162. | DOI | MR | Zbl
,A new generalization of the non-conforming FEM to higher polynomial degrees. Comput. Methods Appl. Math. 17 (2017) 161–185. | DOI | MR | Zbl
,L.R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua. In Large-scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). Vol. 22 of Lect. Appl. Math.. Amer. Math. Soc. Providence, RI (1985) 221–244. | MR | Zbl
The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | DOI | MR | Zbl
,Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16 (2016) 723–750. | DOI | MR | Zbl
,R. Verfürth,A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advances in numerical mathematics. Wiley (1996). | Zbl
Cité par Sources :