Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 365-398.

We apply the concept of an M-decomposition in the framework of steady-state diffusion problems to construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods as well as their companion sandwiching mixed methods in ℝ3 with tetrahedral, pyramidal, prismatic, and hexahedral elements.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016023
Classification : 65M60, 65N30, 58J32, 65N15
Mots-clés : Hybridizable discontinuous Galerkin methods, superconvergence, polyhedral meshes
Cockburn, Bernardo 1 ; Fu, Guosheng 1

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
@article{M2AN_2017__51_1_365_0,
     author = {Cockburn, Bernardo and Fu, Guosheng},
     title = {Superconvergence by {M-decompositions.} {Part} {III:} {Construction} of three-dimensional finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {365--398},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016023},
     mrnumber = {3601012},
     zbl = {1412.65137},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016023/}
}
TY  - JOUR
AU  - Cockburn, Bernardo
AU  - Fu, Guosheng
TI  - Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 365
EP  - 398
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016023/
DO  - 10.1051/m2an/2016023
LA  - en
ID  - M2AN_2017__51_1_365_0
ER  - 
%0 Journal Article
%A Cockburn, Bernardo
%A Fu, Guosheng
%T Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 365-398
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016023/
%R 10.1051/m2an/2016023
%G en
%F M2AN_2017__51_1_365_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 365-398. doi : 10.1051/m2an/2016023. http://www.numdam.org/articles/10.1051/m2an/2016023/

D.N. Arnold and G. Awanou, Finite element differential forms on cubical meshes. Math. Comp. 83 (2014) 1551–1570. | DOI | MR | Zbl

F. Brezzi, J. Douglas, Jr., R. Durán and M. Fortin, Mixed finite element methods for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237–250. | DOI | MR | Zbl

F. Brezzi, J. Douglas, Jr., M. Fortin and L.D. Marini, Efficient rectangular mixed finite element methods in two and three space variables. RAIRO: M2AN 21 (1987) 581–604. | Numdam | MR | Zbl

Z. Chen and J. Douglas, Jr., Prismatic mixed finite elements for second order elliptic problems. Calcolo 26 (1989) 135–148 (1990). | DOI | MR | Zbl

B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: M2AN 51 (2017) 165–186. | DOI | Numdam | MR | Zbl

B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. To appear in Math. Comp. (2016). | DOI | MR

B. Cockburn and W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comp. 83 (2014) 603–633. | DOI | MR | Zbl

B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order eliptic problems. Math. Comp. 81 (2012) 1327–1353. | DOI | MR | Zbl

F. Fuentes, B. Keith, L. Demkowicz and S. Nagaraj, Orientation embedded high order shape functions for the exact sequence elements of all shapes. Preprint [math.NA]. [v2] (2015). | arXiv | MR

J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl

J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. | DOI | MR | Zbl

N. Nigam and J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32 (2012) 448–483. | DOI | MR | Zbl

N. Nigam and J. Phillips, Numerical integration for high order pyramidal finite elements. ESAIM: M2AN 46 (2012) 239–263. | DOI | Numdam | MR | Zbl

Cité par Sources :