This paper is devoted to the study of finite volume methods for the discretization of scalar conservation laws with a multiplicative stochastic force defined on a bounded domain of with Dirichlet boundary conditions and a given initial data in . We introduce a notion of stochastic entropy process solution which generalizes the concept of weak entropy solution introduced by F.Otto for such kind of hyperbolic bounded value problems in the deterministic case. Using a uniqueness result on this solution, we prove that the numerical solution converges to the unique stochastic entropy weak solution of the continuous problem under a stability condition on the time and space steps.
Accepté le :
DOI : 10.1051/m2an/2016020
Mots clés : Stochastic PDE, first-order hyperbolic equation, multiplicative noise, finite volume method, monotone scheme, Dirichlet boundary conditions
@article{M2AN_2017__51_1_225_0, author = {Bauzet, Caroline and Charrier, Julia and Gallou\"et, Thierry}, title = {Numerical approximation of stochastic conservation laws on bounded domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {225--278}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016020}, zbl = {1368.65007}, mrnumber = {3601008}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016020/} }
TY - JOUR AU - Bauzet, Caroline AU - Charrier, Julia AU - Gallouët, Thierry TI - Numerical approximation of stochastic conservation laws on bounded domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 225 EP - 278 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016020/ DO - 10.1051/m2an/2016020 LA - en ID - M2AN_2017__51_1_225_0 ER -
%0 Journal Article %A Bauzet, Caroline %A Charrier, Julia %A Gallouët, Thierry %T Numerical approximation of stochastic conservation laws on bounded domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 225-278 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016020/ %R 10.1051/m2an/2016020 %G en %F M2AN_2017__51_1_225_0
Bauzet, Caroline; Charrier, Julia; Gallouët, Thierry. Numerical approximation of stochastic conservation laws on bounded domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 225-278. doi : 10.1051/m2an/2016020. http://www.numdam.org/articles/10.1051/m2an/2016020/
Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Italian), Grado (1997). Rend. Istit. Mat. Univ. Trieste 31 (2000) 1–69. | MR | Zbl
,On a time-splitting method for a scalar conservation law with a multiplicative stochastic perturbation and numerical experiments. J. Evol. Equ. 14 (2014) 333–356. | DOI | MR | Zbl
,The Cauchy problem for a conservation law with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Eq. 9 (2012) 661–709. | DOI | MR | Zbl
, and ,Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation. Math. Comp. 85 (2016) 2777–2813. | DOI | MR | Zbl
, and ,Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with a multiplicative noise. Stoch. Partial Differ. Eq. Anal. Comput. 4 (2016) 150–223. | MR | Zbl
, and ,The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 4 (2014) 2503–2545. | DOI | MR | Zbl
, and ,Stochastic conservation laws: Weak-in-time formulation and strong entropy condition. J. Funct. Anal. 7 (2014) 2199–2252. | DOI | MR | Zbl
and ,Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate. Math. Methods Appl. Sci. 23 (2000) 467–490. | DOI | MR | Zbl
,On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. | DOI | MR | Zbl
, and ,G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Vol. 44 of Encycl. Math. Appl. Cambridge University Press, Cambridge (1992). | MR | Zbl
Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. | DOI | MR | Zbl
and ,Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chinese Ann. Math. Ser. B 16 (1995) 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995) 119. | MR | Zbl
, and ,R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Vol. VII of Handb. Numer. Anal. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl
Stochastic scalar conservation laws. J. Funct. Anal. 255 (2008) 313–373. | DOI | MR | Zbl
and ,M. Hofmanová, Bhatnagar-gross-krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Statist. (2014). | Numdam | MR
H. Holden and N.H. Risebro, A stochastic approach to conservation laws. In Third International Conference on Hyperbolic Problems. Vols. I, II (Uppsala, 1990). Studentlitteratur, Lund (1991) 575–587. | MR | Zbl
A stochastic conservation law with nonhomogeneous Dirichlet boundary conditions. Acta Math. Vietnam. 41 (2016) 607–632. | DOI | MR | Zbl
and ,Finite volume schemes for hyperbolic balance laws with multiplicative noise. Appl. Numer. Math. 62 (2012) 441–456. | DOI | MR | Zbl
and ,Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 729–734. | MR | Zbl
,On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation. Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996) 107–148. | MR | Zbl
,Stochastic perturbation of nonlinear degenerate parabolic problems. Differ. Integral Eq. 21 (2008) 1055–1082. | MR | Zbl
,Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. | DOI | MR | Zbl
,Cité par Sources :