Numerical approximation of stochastic conservation laws on bounded domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 225-278.

This paper is devoted to the study of finite volume methods for the discretization of scalar conservation laws with a multiplicative stochastic force defined on a bounded domain D of R d with Dirichlet boundary conditions and a given initial data in L (D). We introduce a notion of stochastic entropy process solution which generalizes the concept of weak entropy solution introduced by F.Otto for such kind of hyperbolic bounded value problems in the deterministic case. Using a uniqueness result on this solution, we prove that the numerical solution converges to the unique stochastic entropy weak solution of the continuous problem under a stability condition on the time and space steps.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016020
Classification : 35L60, 60H15, 35L60
Mots-clés : Stochastic PDE, first-order hyperbolic equation, multiplicative noise, finite volume method, monotone scheme, Dirichlet boundary conditions
Bauzet, Caroline 1 ; Charrier, Julia 2 ; Gallouët, Thierry 2

1 LMA, Aix-Marseille Univ, CNRS, UPR 7051, Centrale Marseille, 13402 Marseille cedex 20, France.
2 I2M, Aix-Marseille Univ, CNRS, UMR 7373, Centrale Marseille, 13453 Marseille, France.
@article{M2AN_2017__51_1_225_0,
     author = {Bauzet, Caroline and Charrier, Julia and Gallou\"et, Thierry},
     title = {Numerical approximation of stochastic conservation laws on bounded domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {225--278},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016020},
     zbl = {1368.65007},
     mrnumber = {3601008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016020/}
}
TY  - JOUR
AU  - Bauzet, Caroline
AU  - Charrier, Julia
AU  - Gallouët, Thierry
TI  - Numerical approximation of stochastic conservation laws on bounded domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 225
EP  - 278
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016020/
DO  - 10.1051/m2an/2016020
LA  - en
ID  - M2AN_2017__51_1_225_0
ER  - 
%0 Journal Article
%A Bauzet, Caroline
%A Charrier, Julia
%A Gallouët, Thierry
%T Numerical approximation of stochastic conservation laws on bounded domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 225-278
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016020/
%R 10.1051/m2an/2016020
%G en
%F M2AN_2017__51_1_225_0
Bauzet, Caroline; Charrier, Julia; Gallouët, Thierry. Numerical approximation of stochastic conservation laws on bounded domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 225-278. doi : 10.1051/m2an/2016020. http://www.numdam.org/articles/10.1051/m2an/2016020/

E.J. Balder, Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Italian), Grado (1997). Rend. Istit. Mat. Univ. Trieste 31 (2000) 1–69. | MR | Zbl

C. Bauzet, On a time-splitting method for a scalar conservation law with a multiplicative stochastic perturbation and numerical experiments. J. Evol. Equ. 14 (2014) 333–356. | DOI | MR | Zbl

C. Bauzet, G. Vallet and P. Wittbold, The Cauchy problem for a conservation law with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Eq. 9 (2012) 661–709. | DOI | MR | Zbl

C. Bauzet, J. Charrier and T. Gallouët, Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation. Math. Comp. 85 (2016) 2777–2813. | DOI | MR | Zbl

C. Bauzet, J. Charrier and T. Gallouët, Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with a multiplicative noise. Stoch. Partial Differ. Eq. Anal. Comput. 4 (2016) 150–223. | MR | Zbl

C. Bauzet, G. Vallet and P. Wittbold, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 4 (2014) 2503–2545. | DOI | MR | Zbl

I.H. Biswas and A.K. Majee, Stochastic conservation laws: Weak-in-time formulation and strong entropy condition. J. Funct. Anal. 7 (2014) 2199–2252. | DOI | MR | Zbl

C. Chainais-Hillairet, Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate. Math. Methods Appl. Sci. 23 (2000) 467–490. | DOI | MR | Zbl

G.-Q. Chen, Q. Ding and K.H. Karlsen, On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. | DOI | MR | Zbl

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Vol. 44 of Encycl. Math. Appl. Cambridge University Press, Cambridge (1992). | MR | Zbl

A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chinese Ann. Math. Ser. B 16 (1995) 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995) 119. | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Vol. VII of Handb. Numer. Anal. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

J. Feng and D. Nualart, Stochastic scalar conservation laws. J. Funct. Anal. 255 (2008) 313–373. | DOI | MR | Zbl

M. Hofmanová, Bhatnagar-gross-krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Statist. (2014). | Numdam | MR

H. Holden and N.H. Risebro, A stochastic approach to conservation laws. In Third International Conference on Hyperbolic Problems. Vols. I, II (Uppsala, 1990). Studentlitteratur, Lund (1991) 575–587. | MR | Zbl

K. Kobayasi and D. Noboriguchi, A stochastic conservation law with nonhomogeneous Dirichlet boundary conditions. Acta Math. Vietnam. 41 (2016) 607–632. | DOI | MR | Zbl

I. Kröker and C. Rohde, Finite volume schemes for hyperbolic balance laws with multiplicative noise. Appl. Numer. Math. 62 (2012) 441–456. | DOI | MR | Zbl

F. Otto, Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 729–734. | MR | Zbl

E. Yu. Panov, On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation. Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996) 107–148. | MR | Zbl

G. Vallet, Stochastic perturbation of nonlinear degenerate parabolic problems. Differ. Integral Eq. 21 (2008) 1055–1082. | MR | Zbl

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. | DOI | MR | Zbl

Cité par Sources :