Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 165-186.

We apply the concept of an M-decomposition introduced in Part I to systematically construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods, and their companion sandwiching mixed methods. This is done in the framework of steady-state diffusion problems for the h- and p-versions of the methods for general polygonal meshes in two-space dimensions.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016016
Classification : 65M60, 65N30, 58J32, 65N15
Mots-clés : Hybridizable discontinuous Galerkin methods, superconvergence, polygonal meshes
Cockburn, Bernardo 1 ; Fu, Guosheng 1

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
@article{M2AN_2017__51_1_165_0,
     author = {Cockburn, Bernardo and Fu, Guosheng},
     title = {Superconvergence by $M$-decompositions. {Part} {II:} {Construction} of two-dimensional finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {165--186},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016016},
     mrnumber = {3601005},
     zbl = {1412.65205},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016016/}
}
TY  - JOUR
AU  - Cockburn, Bernardo
AU  - Fu, Guosheng
TI  - Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 165
EP  - 186
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016016/
DO  - 10.1051/m2an/2016016
LA  - en
ID  - M2AN_2017__51_1_165_0
ER  - 
%0 Journal Article
%A Cockburn, Bernardo
%A Fu, Guosheng
%T Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 165-186
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016016/
%R 10.1051/m2an/2016016
%G en
%F M2AN_2017__51_1_165_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by $M$-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 165-186. doi : 10.1051/m2an/2016016. http://www.numdam.org/articles/10.1051/m2an/2016016/

T. Arbogast and H. Xiao, Two-level mortar domain decomposition mortar preconditioners for heterogeneous elliptic problems. Comput. Methods Appl. Mech. Engrg. 292 (2015) 221–242. | DOI | MR | Zbl

D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451 (electronic). | DOI | MR | Zbl

P. Bastian and B. Riviere, Superconvergence and H(div) projection for discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids 42 (2003) 1043–1057. | DOI | MR | Zbl

L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, and A. Russo, Basic principles of Virtual Element Methods. Math. Models Methods. Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

L. Beirao Da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming VEM. Numer. Math. 133 (2016) 303–332. | MR | Zbl

D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer-Verlag, New York (2013). | MR | Zbl

F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | DOI | MR | Zbl

F. Brezzi, J. Douglas Jr, M. Fortin and L.D. Marini, Efficient rectangular mixed finite elements in two and three space variables. ESAIM: M2AN 21 (1987) 581–604. | DOI | Numdam | MR | Zbl

F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed Virtual Element Methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl

P. Castillo, B. Cockburn, I. Perugia and D. Schotzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. | DOI | MR | Zbl

Y. Chen and B. Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: General nonconforming meshes. IMA J. Numer. Anal. 32 (2012) 1267–1293. | DOI | MR | Zbl

Y. Chen and B. Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes. Math. Comput. 83 (2014) 87–111. | DOI | MR | Zbl

B. Cockburn, Static condensation, hybridization and the devising of the HGD methods, in LNCSE Series, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, edited by G.R. Barrenechea, F. Brezzi, A. Cagiani and E.H. Georgoulis. Durham Symposium, London Mathematical Society, Durham, UK (2014) 7–16. | MR

B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. To appear in ESAIM: M2AN (2016). | DOI | Numdam | MR

B. Cockburn and W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comput. 83 (2014) 603–633. | DOI | MR | Zbl

B. Cockburn, G. Kanschat and D. Schötzau, A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74 (2005) 1067–1095. | DOI | Zbl

B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | Zbl

B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | Zbl

B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. | DOI | Zbl

B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. To appear in Math. Comput. (2016).

B. Cockburn, D. Dipietro and A. Ern, Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods. ESAIM: M2AM 50 (2016) 635–650. | DOI | Numdam | Zbl

D.A. Di. Pietro and A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | Zbl

D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. | DOI | Zbl

A. Ern, S. Nicaise and M. Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345 (2007) 709–712. | DOI | Zbl

A. Gillette, A. Rand and C. Bajaj, Error estimates for generalized barycentric interpolation. Adv. Comput. Math. 37 (2012) 417–439. | DOI | Zbl

Y. Kuznetsov and S. Repin, New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 18 (2003) 261–278. | DOI | Zbl

Y. Kuznetsov and S. Repin, Convergence analysis and error estimates for mixed finite element method on distorted meshes. J. Numer. Math. 13 (2005) 33–51. | DOI | Zbl

C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis. Rheinisch-Westfälischen Technischen Hochschule, Aachen (2010).

G. Manzini, A. Russo and N. Sukumar, New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. | DOI | Zbl

I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65 (2015) 327–340. | DOI | Zbl

P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Method, edited by I. Galligani and E. Magenes. Vol. 606 of Lect. Notes Math. Springer-Verlag, New York (1977) 292–315. | Zbl

A. Sboui, J. Jaffré and J. Roberts, A composite mixed finite element for hexahedral grids. SIAM J. Sci. Comput. 31 (2009) 2623–2645. | DOI | Zbl

M. Vohralík and B. Wohlmuth. Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | Zbl

J. Warren, Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6 (1996) 97–108. | DOI | Zbl

Cité par Sources :