A numerical method for Mean Field Games on networks
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 63-88.

We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016015
Classification : 91A15, 35R02, 35B30, 49N70, 65M06
Mots-clés : Networks, mean field games, finite difference schemes, convergence
Cacace, Simone 1 ; Camilli, Fabio 2 ; Marchi, Claudio 3

1 Dip. di Matematica, “Sapienza” Università di Roma, p.le A. Moro 5, 00185 Roma, Italy.
2 Dip. di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” Università di Roma, via Scarpa 16, 00161 Roma, Italy.
3 Dip. di Ingegneria dell’Informazione, Università di Padova, via Gradenigo 6/B, 35131 Padova, Italy.
@article{M2AN_2017__51_1_63_0,
     author = {Cacace, Simone and Camilli, Fabio and Marchi, Claudio},
     title = {A numerical method for {Mean} {Field} {Games} on networks},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {63--88},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016015},
     mrnumber = {3601001},
     zbl = {1356.91028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016015/}
}
TY  - JOUR
AU  - Cacace, Simone
AU  - Camilli, Fabio
AU  - Marchi, Claudio
TI  - A numerical method for Mean Field Games on networks
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 63
EP  - 88
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016015/
DO  - 10.1051/m2an/2016015
LA  - en
ID  - M2AN_2017__51_1_63_0
ER  - 
%0 Journal Article
%A Cacace, Simone
%A Camilli, Fabio
%A Marchi, Claudio
%T A numerical method for Mean Field Games on networks
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 63-88
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016015/
%R 10.1051/m2an/2016015
%G en
%F M2AN_2017__51_1_63_0
Cacace, Simone; Camilli, Fabio; Marchi, Claudio. A numerical method for Mean Field Games on networks. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 63-88. doi : 10.1051/m2an/2016015. http://www.numdam.org/articles/10.1051/m2an/2016015/

Y. Achdou, Finite difference methods for mean field games. In Hamilton−Jacobi equations: approximations, numerical analysis and applications. Vol. 2074 of Lecture Notes Math. Springer, Heidelberg (2013) 1–47. | MR | Zbl

Y. Achdou, J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics. Phil. Trans. R. Soc. A 372 (2014) 2078. | DOI | MR | Zbl

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51 (2013) 2585–2612. | DOI | MR | Zbl

Y. Achdou and I. Capuzzo Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. | DOI | MR | Zbl

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1 (2006) 57–84. | DOI | MR | Zbl

S. Cacace and F. Camilli, Effective Hamiltonian for Hamilton−Jacobi equations: yet another but efficient numerical method. In preparation (2016).

F. Camilli, E. Carlini and C. Marchi, A model problem for Mean Field Games on networks. Discrete Contin. Dyn. Syst. 35 (2015) 4173–4192. | DOI | MR | Zbl

F. Camilli and C. Marchi, Stationary Mean Field Games on networks. SIAM J. Control Optim. 54 (2016) 1085–1103. | DOI | MR | Zbl

E. Carlini and F. Silva, A fully discrete Semi-Lagrangian scheme for a first order mean field games problem. SIAM J. Numer. Anal. 52 (2014) 45–67. | DOI | MR | Zbl

C. D’Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply chain. SIAM J. Numer. Anal. 51 (2013) 2634–2650. | DOI | MR | Zbl

T. Davis, SuiteSparse. Available at http://faculty.cse.tamu.edu/davis/suitesparse.html.

C. Dogbé, Modeling crowd dynamics by the mean-field limit approach. Math. Comput. Model. 52 (2010) 1506–1520. | DOI | MR | Zbl

M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle. Ann. Probab. 21 (1993) 2215–2245. | DOI | MR | Zbl

D. Gomes and J. Saude, Mean field games – A brief survey. Dyn. Games Appl. 4 (2014) 110–154. | DOI | MR | Zbl

O. Guéant, Mean field games equations with quadratic Hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22 (2012) 1250022. | DOI | MR | Zbl

O. Guéant, J-M. Lasry and P-L. Lions. Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance 2010. Vol. 2003 of Lecture Notes Math. Springer, Berlin (2011). | MR | Zbl

M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567–588. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

V. Lescarret and E. Zuazua, Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces. Math. Comput. 84 (2015) 119–152. | DOI | MR | Zbl

D. Mercier and S. Nicaise, Existence results for general systems of differential equations on one-dimensional networks and prewavelets approximation. Discrete Contin. Dyn. Syst. 4 (1998) 273–300. | DOI | MR | Zbl

S. Nicaise, Elliptic operators on elementary ramified spaces. Integral Equations Operator Theory 11 (1988) 230–257. | DOI | MR | Zbl

J.A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Appl. Comput. Math. Cambridge University Press, Cambridge (1999). | MR | Zbl

Cité par Sources :