We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.
Accepté le :
DOI : 10.1051/m2an/2016015
Mots-clés : Networks, mean field games, finite difference schemes, convergence
@article{M2AN_2017__51_1_63_0, author = {Cacace, Simone and Camilli, Fabio and Marchi, Claudio}, title = {A numerical method for {Mean} {Field} {Games} on networks}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {63--88}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016015}, mrnumber = {3601001}, zbl = {1356.91028}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016015/} }
TY - JOUR AU - Cacace, Simone AU - Camilli, Fabio AU - Marchi, Claudio TI - A numerical method for Mean Field Games on networks JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 63 EP - 88 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016015/ DO - 10.1051/m2an/2016015 LA - en ID - M2AN_2017__51_1_63_0 ER -
%0 Journal Article %A Cacace, Simone %A Camilli, Fabio %A Marchi, Claudio %T A numerical method for Mean Field Games on networks %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 63-88 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016015/ %R 10.1051/m2an/2016015 %G en %F M2AN_2017__51_1_63_0
Cacace, Simone; Camilli, Fabio; Marchi, Claudio. A numerical method for Mean Field Games on networks. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 63-88. doi : 10.1051/m2an/2016015. http://www.numdam.org/articles/10.1051/m2an/2016015/
Y. Achdou, Finite difference methods for mean field games. In Hamilton−Jacobi equations: approximations, numerical analysis and applications. Vol. 2074 of Lecture Notes Math. Springer, Heidelberg (2013) 1–47. | MR | Zbl
Partial differential equation models in macroeconomics. Phil. Trans. R. Soc. A 372 (2014) 2078. | DOI | MR | Zbl
, , , and ,Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51 (2013) 2585–2612. | DOI | MR | Zbl
, and ,Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. | DOI | MR | Zbl
and ,Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1 (2006) 57–84. | DOI | MR | Zbl
, and ,S. Cacace and F. Camilli, Effective Hamiltonian for Hamilton−Jacobi equations: yet another but efficient numerical method. In preparation (2016).
A model problem for Mean Field Games on networks. Discrete Contin. Dyn. Syst. 35 (2015) 4173–4192. | DOI | MR | Zbl
, and ,Stationary Mean Field Games on networks. SIAM J. Control Optim. 54 (2016) 1085–1103. | DOI | MR | Zbl
and ,A fully discrete Semi-Lagrangian scheme for a first order mean field games problem. SIAM J. Numer. Anal. 52 (2014) 45–67. | DOI | MR | Zbl
and ,Numerical schemes for the optimal input flow of a supply chain. SIAM J. Numer. Anal. 51 (2013) 2634–2650. | DOI | MR | Zbl
, and ,T. Davis, SuiteSparse. Available at http://faculty.cse.tamu.edu/davis/suitesparse.html.
Modeling crowd dynamics by the mean-field limit approach. Math. Comput. Model. 52 (2010) 1506–1520. | DOI | MR | Zbl
,Diffusion processes on graphs and the averaging principle. Ann. Probab. 21 (1993) 2215–2245. | DOI | MR | Zbl
and ,Mean field games – A brief survey. Dyn. Games Appl. 4 (2014) 110–154. | DOI | MR | Zbl
and ,Mean field games equations with quadratic Hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22 (2012) 1250022. | DOI | MR | Zbl
,O. Guéant, J-M. Lasry and P-L. Lions. Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance 2010. Vol. 2003 of Lecture Notes Math. Springer, Berlin (2011). | MR | Zbl
Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl
, and ,Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567–588. | DOI | MR | Zbl
, and ,Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl
and ,Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces. Math. Comput. 84 (2015) 119–152. | DOI | MR | Zbl
and ,Existence results for general systems of differential equations on one-dimensional networks and prewavelets approximation. Discrete Contin. Dyn. Syst. 4 (1998) 273–300. | DOI | MR | Zbl
and ,Elliptic operators on elementary ramified spaces. Integral Equations Operator Theory 11 (1988) 230–257. | DOI | MR | Zbl
,J.A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Appl. Comput. Math. Cambridge University Press, Cambridge (1999). | MR | Zbl
Cité par Sources :