A convergent explicit finite difference scheme for a mechanical model for tumor growth
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 35-62.

Mechanical models for tumor growth have been used extensively in recent years for the analysis of medical observations and for the prediction of cancer evolution based on image analysis. This work deals with the numerical approximation of a mechanical model for tumor growth and the analysis of its dynamics. The system under investigation is given by a multi-phase flow model: The densities of the different cells are governed by a transport equation for the evolution of tumor cells, whereas the velocity field is given by a Brinkman regularization of the classical Darcy’s law. An efficient finite difference scheme is proposed and shown to converge to a weak solution of the system. Our approach relies on convergence and compactness arguments in the spirit of Lions [P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Vol. 10 of Oxford Lecture Series Math. Appl. The Clarendon Press, Oxford University Press, New York (1998)].

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016014
Classification : 35Q30, 76N10, 46E35
Mots-clés : Tumor growth models, cancer progression, mixed models, multi-phase flow, finite difference scheme, existence
Trivisa, Konstantina 1 ; Weber, Franziska 2

1 Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA.
2 Seminar for Applied Mathematics (SAM), Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland.
@article{M2AN_2017__51_1_35_0,
     author = {Trivisa, Konstantina and Weber, Franziska},
     title = {A convergent explicit finite difference scheme for a mechanical model for tumor growth},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {35--62},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016014},
     mrnumber = {3601000},
     zbl = {1360.35197},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016014/}
}
TY  - JOUR
AU  - Trivisa, Konstantina
AU  - Weber, Franziska
TI  - A convergent explicit finite difference scheme for a mechanical model for tumor growth
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 35
EP  - 62
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016014/
DO  - 10.1051/m2an/2016014
LA  - en
ID  - M2AN_2017__51_1_35_0
ER  - 
%0 Journal Article
%A Trivisa, Konstantina
%A Weber, Franziska
%T A convergent explicit finite difference scheme for a mechanical model for tumor growth
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 35-62
%V 51
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016014/
%R 10.1051/m2an/2016014
%G en
%F M2AN_2017__51_1_35_0
Trivisa, Konstantina; Weber, Franziska. A convergent explicit finite difference scheme for a mechanical model for tumor growth. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 35-62. doi : 10.1051/m2an/2016014. http://www.numdam.org/articles/10.1051/m2an/2016014/

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vázquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241–273. | Numdam | MR | Zbl

M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. (2014). | MR

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58 (2009) 657–687. | DOI | MR | Zbl

J. Casado-Díaz, T. Chacón Rebollo, V. Girault, M. Gómez Marmol and F. Murat, Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1 . Numer. Math. 105 (2007) 337–374. | DOI | MR | Zbl

D. Chen and A. Friedman, A two-phase free boundary problem with discontinuous velocity: application to tumor model. J. Math. Anal. Appl. 399 (2013) 378–393. | DOI | MR | Zbl

G.M. Coclite, S. Mishra, N.H. Risebro and F. Weber, Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media. Comput. Geosci. 18 (2014) 637–659. | DOI | MR | Zbl

R.J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl

D. Donatelli and K. Trivisa, On a nonlinear model for the evolution of tumor growth with a variable total density of cancerous cells. Preprint (2015).

D. Donatelli and K. Trivisa, On a nonlinear model for the evolution of tumor growth with drug application. Nonlinearity 28 (2015) 1463. | DOI | MR | Zbl

D. Donatelli and K. Trivisa, On a nonlinear model for tumor growth: global in time weak solutions. J. Math. Fluid Mech. 16 (2014) 787–803. | DOI | MR | Zbl

M. Dreher and A. Jüngel, Compact families of piecewise constant functions in L p (0,T;B). Nonlin. Anal. 75 (2012) 3072–3077. | DOI | MR | Zbl

L.C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics, 2nd edition. American Mathematical Society, Providence, RI (2010). | MR | Zbl

R. Eymard, T. Gallouët, R. Herbin and J.C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case. Math. Comp. 79 (2010) 649–675. | DOI | MR | Zbl

A. Friedman, A hierarchy of cancer models and their mathematical challenges. Mathematical models in cancer (Nashville, TN, 2002). Discrete Contin. Dyn. Syst. Ser. B 4 (2004) 147–159. | DOI | MR | Zbl

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl

K.H. Karlsen and T.K. Karper, A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal. 48 (2010) 1846–1876. | DOI | MR | Zbl

K.H. Karlsen and T.K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comp. 80 (2011) 1459–1498. | DOI | MR | Zbl

K.H. Karlsen and T.K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow. IMA J. Numer. Anal. 32 (2012) 725–764. | DOI | MR | Zbl

T.K. Karper, A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125 (2013) 441–510. | DOI | MR | Zbl

O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Vol. 2 of Mathematics and its Applications. Gordon and Breach, Science Publishers, New York-London-Paris (1969). | MR | Zbl

O.A. Ladyzhenskaya, The boundary value problems of mathematical physics, Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. Vol. 49 of Appl. Math. Sci. Springer-Verlag, New York (1985). | MR | Zbl

P.-L. Lions, Mathematical topics in fluid mechanics. 1-Incompressible models. Vol. 3 of Oxford Lecture Series Math. Appl. The Clarendon Press, Oxford University Press, New York (1996). | MR

P.-L. Lions, Mathematical topics in fluid mechanics. 2-Compressible models. Vol. 10 of Oxford Lecture Series Math. Appl. The Clarendon Press, Oxford University Press, New York (1998). | MR

A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Vol. 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (1995). | MR | Zbl

A. Novotný and I. Straškraba, Introduction to the mathematical theory of compressible flow. Vol. 27 of Oxford Lecture Series Math. Appl. Oxford University Press, Oxford (2004). | MR | Zbl

B. Perthame, F. Quirós, M. Tang and N. Vauchelet, Derivation of a Hele–Shaw type system from a cell model with active motion. Interfaces Free Bound. 16 (2014) 489–508. | DOI | MR | Zbl

B. Perthame, F. Quirós and J.L. Vázquez, The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212 (2014) 93–127. | DOI | MR | Zbl

B. Perthame, M. Tang and N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient. Math. Models Methods Appl. Sci. 24 (2014) 2601–2626. | DOI | MR | Zbl

B. Perthame and N. Vauchelet, Incompressible limit of mechanical model of tumor growth with viscosity. Phil. Trans. R. Sci. A 373 (2015) 20140283. | DOI | MR | Zbl

J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost and F. Jülicher, Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. 107 (2010) 20863–20868. | DOI

K. Trivisa and F. Weber, Analysis and Simulation on a Model for the Evolution of Tumors under the Influence of Nutrient and Drug Application. Preprint (2016). | arXiv | MR

J.-H. Zhao, A parabolic-hyperbolic free boundary problem modeling tumor growth with drug application. Electron. J. Differ. Eq. 18 (2010). | MR | Zbl

Cité par Sources :