This paper is devoted to the comparison of three two-fluid models in steam-water applications involving phase transition and shock waves. The three models are presented in a common formalism that helps to underline their shared properties. A numerical method based on previous work is extended to all models and to more complex Equations Of State. Particular attention is paid to the verification of every step of the method so that convergence studies can be carried out. Afterwards, models are compared with each other and with experimental data in two different cases of steam-water transients. The first one is Simpson water-hammer experiment and the second one is a rapid depressurization with flashing studied in Canon experiment.
Accepté le :
DOI : 10.1051/m2an/2016001
Mots clés : Two-phase compressible flows, entropy inequality, closure laws, relaxation effects, finite volume schemes
@article{M2AN_2016__50_6_1631_0, author = {Lochon, Hippolyte and Daude, Fr\'ed\'eric and Galon, Pascal and H\'erard, Jean-Marc}, title = {Comparison of two-fluid models on steam-water transients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1631--1657}, publisher = {EDP-Sciences}, volume = {50}, number = {6}, year = {2016}, doi = {10.1051/m2an/2016001}, zbl = {1353.76089}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016001/} }
TY - JOUR AU - Lochon, Hippolyte AU - Daude, Frédéric AU - Galon, Pascal AU - Hérard, Jean-Marc TI - Comparison of two-fluid models on steam-water transients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1631 EP - 1657 VL - 50 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016001/ DO - 10.1051/m2an/2016001 LA - en ID - M2AN_2016__50_6_1631_0 ER -
%0 Journal Article %A Lochon, Hippolyte %A Daude, Frédéric %A Galon, Pascal %A Hérard, Jean-Marc %T Comparison of two-fluid models on steam-water transients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1631-1657 %V 50 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016001/ %R 10.1051/m2an/2016001 %G en %F M2AN_2016__50_6_1631_0
Lochon, Hippolyte; Daude, Frédéric; Galon, Pascal; Hérard, Jean-Marc. Comparison of two-fluid models on steam-water transients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1631-1657. doi : 10.1051/m2an/2016001. http://www.numdam.org/articles/10.1051/m2an/2016001/
A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. | DOI | Zbl
, and ,The Riemann problem for the Baer–Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434–464. | DOI | Zbl
and ,A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl
and ,Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids 11 (1999) 378–402. | DOI | Zbl
, , , and ,R. Berry, L. Zou, H. Zhao, D. Andrs, J. Peterson, H. Zhang and R. Martineau, Relap-7: Demonstrating Seven-Equation, Two-Phase Flow Simulation in a Single-Pipe, Two-Phase Reactor Core and Steam Separator/Dryer, Technical Report INL/EXT-13-28750, Idaho National Laboratory (INL) (2013).
Modelling detonation waves in heterogeneous energetic materials. J. Comput. Phys. 196 (2004) 490–538. | DOI | Zbl
, and ,Closure laws for a two-fluid two-pressure model. C. R. Math. 334 (2002) 927–932. | DOI | Zbl
, , and ,A robust entropy-satisfying finite volume scheme for the isentropic Baer–Nunziato model. ESAIM: M2AN 48 (2014) 165–206. | DOI | Numdam | Zbl
, , and ,Approximate solutions of the Baer-Nunziato Model. ESAIM: Procs. 40 (2013) 63–82. | DOI | Zbl
, , , , , and ,Validation of a two-fluid model on unsteady liquid-vapor water flows. Comput. Fluids 119 (2015) 131–142. | DOI | Zbl
, , , , and ,Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition. Comput. Fluids 94 (2014) 112–138. | DOI | Zbl
, , and ,An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Phys. 222 (2007) 217–245. | DOI | Zbl
and ,The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. | DOI | Zbl
, , and ,D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids. Springer Verlag (1999). | Zbl
Europlexus, User’s Manual. Technical Report, Joint Reasearch Center (JRC), Commissariat là’énergie atomique et aux énergies alternatives (CEA). Available at http://europlexus.jrc.ec.europa.eu/public/manual˙html/index.html (2015).
Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. | DOI | MR | Zbl
, and ,Hyperbolic relaxation models for granular flows. ESAIM: M2AN 44 (2010) 371–400. | DOI | Zbl
, , and ,S. Gavrilyuk, The structure of pressure relaxation terms: one-velocity case. Internal report H-I83-2014-00276-EN, EDF R&D (2014).
Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | DOI | Zbl
and ,Renormalization group solution of two-phase flow equations for Rayleigh-Taylor mixing. Phys. Lett. A 222 (1996) 171–176. | DOI | Zbl
, and ,V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. thesis, Université de Provence - Aix-Marseille I. Available at https://tel.archives-ouvertes.fr/tel-00169178/document (2007).
A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. | DOI | Zbl
,J.-M. Hérard, Une classe de modèles diphasiques bifluides avec changement de régime. Internal report H-I81-2010-00486-FR, EDF (2010).
A fractional step method to compute a class of compressible gas-liquid flows. Comput. Fluids 55 (2012) 57–69. | DOI | Zbl
and ,J.-M. Hérard and Y. Liu, Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles. Internal report H-I81-2013-01162-FR, EDF (2013).
M. Ishii, Thermo-fluid dynamic theory of two-phase flows. Collection de la Direction des Etudes et Recherches d’Electricité de France. Eyrolles, Paris (1975). | Zbl
Entropy of averaging for compressible two-pressure two-phase flow models. Phys. Lett. A 360 (2006) 114–121. | DOI | Zbl
, and ,Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids 9 (1997) 3885–3897. | DOI
, , , and ,J. Laviéville, M. Boucker, E. Quemerais, S. Mimouni and N. Méchitoua, NEPTUNECFD V1.0 - Theory Manual. Internal report H-I81-2006-04377-EN. EDF R&D (2006).
Élaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques. Int. J. Thermal Sci. 43 (2004) 265–276. | DOI
, and ,Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena. ESAIM: Procs. 40 (2013) 103–123. | DOI | Zbl
, and ,H. Lochon, Modélisation d’écoulements diphasiques: fermetures entropiques de modèles bifluides. Internal report H-T63-2014-10406-FR. EDF (2014).
Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28 (2016) 1157–1189. | DOI | Zbl
, , and .A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. | DOI | MR | Zbl
and ,Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124–151. | DOI | Zbl
and ,RELAP5-3d, Code Manual Volume IV: Models and Correlations. Technical Report INEEL-EXT-98-00834, Idaho National Laboratory (INL) (2012).
B. Riegel, Contribution àl’étude de la décompression d’une capacité en regime diphasique. Ph.D. thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble (1978).
A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows. J. Comput. Phys. 150 (1999) 425–467. | DOI | Zbl
and ,The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. | DOI | Zbl
, and ,A.R. Simpson, Large water hammer pressures due to column separation in sloping pipes. Ph.D. thesis, University of Michigan (1986).
HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. | DOI | Zbl
and ,Cité par Sources :