Preface
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1549-1550.
@article{M2AN_2015__49_6_1549_0,
     author = {Maury, Bertrand and Santambrogio, Filippo},
     title = {Preface},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1549--1550},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015081},
     mrnumber = {3423262},
     zbl = {1329.00162},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015081/}
}
TY  - JOUR
AU  - Maury, Bertrand
AU  - Santambrogio, Filippo
TI  - Preface
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1549
EP  - 1550
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015081/
DO  - 10.1051/m2an/2015081
LA  - en
ID  - M2AN_2015__49_6_1549_0
ER  - 
%0 Journal Article
%A Maury, Bertrand
%A Santambrogio, Filippo
%T Preface
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1549-1550
%V 49
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015081/
%R 10.1051/m2an/2015081
%G en
%F M2AN_2015__49_6_1549_0
Maury, Bertrand; Santambrogio, Filippo. Preface. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1549-1550. doi : 10.1051/m2an/2015081. http://www.numdam.org/articles/10.1051/m2an/2015081/

A. Blanchet, José Antonio Carrillo, David Kinderlehrer, Michal Kowalczyk, Philippe Laurençot and Stefano Lisini, A hybrid variational principle for the Keller–Segel system in R 2 . [] | DOI

Afaf Bouharguane, Angelo Iollo and Lisl Weynans, Numerical solution of the Monge-Kantorovich problem by density lift-up continuation. [] | DOI

Yann Brenier, Connections between optimal transport, combinatorial optimization and hydrodynamics. [] | DOI

Giuseppe Buttazzo, Guillaume Carlier and Serena Guarino Lo Bianco, Optimal regions for congested transport. [] | DOI

Guillaume Carlier, Adam Oberman and Edouard Oudet, Numerical methods for matching for teams and Wasserstein barycenters. [] | DOI

Luigi De Pascale, Optimal transport with Coulomb cost. Approximation and duality. [] | DOI

Ivar Ekeland and Maurice Queyranne, Optimal pits and optimal transportation. [] | DOI

Romain Hug, Emmanuel Maitre and Nicolas Papadakis, Multi-physics optimal transportation and image interpolation. [] | DOI

Bruno Lévy, A numerical algorithm for L 2 semi-discrete optimal transport in 3D. [] | DOI

Damiano Lombardi and Emmanuel Maitre, Eulerian models and algorithms for unbalanced optimal transport. [] | DOI

Jan Maas, Martin Rumpf, Carola Schönlieb and Stefan Simon, A generalized model for optimal transport of images including dissipation and density modulation. [] | DOI

Brendan Pass, Multi-marginal optimal transport: theory and applications. [] | DOI

Qinglan Xia, Motivations, ideas and applications of ramified optimal transportation. [] | DOI

Cité par Sources :