Error estimates of the integral deferred correction method for stiff problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1137-1166.

In this paper, we present error estimates of the integral deferred correction method constructed with stiffly accurate implicit Runge–Kutta methods with a nonsingular matrix A in its Butcher table representation, when applied to stiff problems characterized by a small positive parameter ε. In our error estimates, we expand the global error in powers of ε and show that the coefficients are global errors of the integral deferred correction method applied to a sequence of differential algebraic systems. A study of these errors and of the remainder of the expansion yields sharp error bounds for the stiff problem. Numerical results for the van der Pol equation are presented to illustrate our theoretical findings. Finally, we study the linear stability properties of these methods.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015072
Classification : 65-XX
Mots clés : Stiff problems, Runge–Kutta methods, integral deferred correction methods, differential algebraic systems
Boscarino, Sebastiano 1 ; Qiu, Jing-Mei 2

1 Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy.
2 Department of Mathematics, University of Houston, 77004 Houston, USA.
@article{M2AN_2016__50_4_1137_0,
     author = {Boscarino, Sebastiano and Qiu, Jing-Mei},
     title = {Error estimates of the integral deferred correction method for stiff problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1137--1166},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4},
     year = {2016},
     doi = {10.1051/m2an/2015072},
     zbl = {1364.65151},
     mrnumber = {3521715},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015072/}
}
TY  - JOUR
AU  - Boscarino, Sebastiano
AU  - Qiu, Jing-Mei
TI  - Error estimates of the integral deferred correction method for stiff problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1137
EP  - 1166
VL  - 50
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015072/
DO  - 10.1051/m2an/2015072
LA  - en
ID  - M2AN_2016__50_4_1137_0
ER  - 
%0 Journal Article
%A Boscarino, Sebastiano
%A Qiu, Jing-Mei
%T Error estimates of the integral deferred correction method for stiff problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1137-1166
%V 50
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015072/
%R 10.1051/m2an/2015072
%G en
%F M2AN_2016__50_4_1137_0
Boscarino, Sebastiano; Qiu, Jing-Mei. Error estimates of the integral deferred correction method for stiff problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1137-1166. doi : 10.1051/m2an/2015072. http://www.numdam.org/articles/10.1051/m2an/2015072/

W. Auzinger, H. Hofstätter, W. Kreuzer and E. Weinmüller, Modified defect correction algorithms for ODEs. Part I: General Theory. Numer. Algorithms 36 (2004) 135–156. | DOI | MR | Zbl

K. Böhmer and HJ Stetter, Defect correction methods. Theory and applications (1984). | MR | Zbl

A. Christlieb, M. Morton, B. Ong and J.-M. Qiu, Semi-implicit integral deferred correction constructed with high order additive Runge–Kutta methods. Communications in Mathematical Sciences (2011). | MR | Zbl

A. Christlieb, B. Ong and J.M. Qiu, Comments on high order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci 4 (2009) 27–56. | DOI | MR | Zbl

A. Christlieb, B. Ong and J.M. Qiu, Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79 (2009) 761. | DOI | MR | Zbl

A. Dutt, L. Greengard and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40 (2000) 241–266. | DOI | MR | Zbl

C.W. Gear, Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9 (1988) 39–47. | DOI | MR | Zbl

E. Hairer and G. Wanner, Solving ordinary differential equations II: stiff and differential algebraic problems, vol. 2. Springer Verlag (1993). | MR | Zbl

E. Hairer, C. Lubich and M. Roche, Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT Numer. Math. 28 (1988) 678–700. | DOI | MR | Zbl

J. Huang, J. Jia and M. Minion, Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221 (2007) 739–760. | DOI | MR | Zbl

A.T. Layton, On the choice of correctors for semi-implicit picard deferred correction methods. Appl. Numer. Math. 58 (2008) 845–858. | DOI | MR | Zbl

A.T. Layton and M.L. Minion, Implications of the choice of quadrature nodes for picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45 (2005) 341–373. | DOI | MR | Zbl

A.T. Layton and M.L. Minion, Implications of the choice of predictors for semi-implicit picard integral deferred corrections methods. Commun. Appl. Math. Comput. Sci. 1 (2007) 1–34. | DOI | MR | Zbl

M.L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1 (2003) 471–500. | DOI | MR | Zbl

R.E. O’Malley Jr, Introduction to singular perturbations, Vol. 14. Applied Mathematics and Mechanics. Technical report, DTIC Document (1974). | MR | Zbl

R.D. Skeel, A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal. 19 (1982) 171–196. | DOI | MR | Zbl

A. Tikhonov, B. Vasl’eva and A. Sveshnikov, Differential Equations. Springer Verlag (1985). | MR | Zbl

Cité par Sources :