In this paper, we present error estimates of the integral deferred correction method constructed with stiffly accurate implicit Runge–Kutta methods with a nonsingular matrix
Accepté le :
DOI : 10.1051/m2an/2015072
Mots-clés : Stiff problems, Runge–Kutta methods, integral deferred correction methods, differential algebraic systems
@article{M2AN_2016__50_4_1137_0, author = {Boscarino, Sebastiano and Qiu, Jing-Mei}, title = {Error estimates of the integral deferred correction method for stiff problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1137--1166}, publisher = {EDP-Sciences}, volume = {50}, number = {4}, year = {2016}, doi = {10.1051/m2an/2015072}, zbl = {1364.65151}, mrnumber = {3521715}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2015072/} }
TY - JOUR AU - Boscarino, Sebastiano AU - Qiu, Jing-Mei TI - Error estimates of the integral deferred correction method for stiff problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1137 EP - 1166 VL - 50 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015072/ DO - 10.1051/m2an/2015072 LA - en ID - M2AN_2016__50_4_1137_0 ER -
%0 Journal Article %A Boscarino, Sebastiano %A Qiu, Jing-Mei %T Error estimates of the integral deferred correction method for stiff problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1137-1166 %V 50 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015072/ %R 10.1051/m2an/2015072 %G en %F M2AN_2016__50_4_1137_0
Boscarino, Sebastiano; Qiu, Jing-Mei. Error estimates of the integral deferred correction method for stiff problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1137-1166. doi : 10.1051/m2an/2015072. https://www.numdam.org/articles/10.1051/m2an/2015072/
Modified defect correction algorithms for ODEs. Part I: General Theory. Numer. Algorithms 36 (2004) 135–156. | DOI | MR | Zbl
, , and ,K. Böhmer and HJ Stetter, Defect correction methods. Theory and applications (1984). | MR | Zbl
A. Christlieb, M. Morton, B. Ong and J.-M. Qiu, Semi-implicit integral deferred correction constructed with high order additive Runge–Kutta methods. Communications in Mathematical Sciences (2011). | MR | Zbl
Comments on high order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci 4 (2009) 27–56. | DOI | MR | Zbl
, and ,Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79 (2009) 761. | DOI | MR | Zbl
, and ,Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40 (2000) 241–266. | DOI | MR | Zbl
, and ,Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9 (1988) 39–47. | DOI | MR | Zbl
,E. Hairer and G. Wanner, Solving ordinary differential equations II: stiff and differential algebraic problems, vol. 2. Springer Verlag (1993). | MR | Zbl
Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT Numer. Math. 28 (1988) 678–700. | DOI | MR | Zbl
, and ,Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221 (2007) 739–760. | DOI | MR | Zbl
, and ,On the choice of correctors for semi-implicit picard deferred correction methods. Appl. Numer. Math. 58 (2008) 845–858. | DOI | MR | Zbl
,Implications of the choice of quadrature nodes for picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45 (2005) 341–373. | DOI | MR | Zbl
and ,Implications of the choice of predictors for semi-implicit picard integral deferred corrections methods. Commun. Appl. Math. Comput. Sci. 1 (2007) 1–34. | DOI | MR | Zbl
and ,Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1 (2003) 471–500. | DOI | MR | Zbl
,R.E. O’Malley Jr, Introduction to singular perturbations, Vol. 14. Applied Mathematics and Mechanics. Technical report, DTIC Document (1974). | MR | Zbl
A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal. 19 (1982) 171–196. | DOI | MR | Zbl
,A. Tikhonov, B. Vasl’eva and A. Sveshnikov, Differential Equations. Springer Verlag (1985). | MR | Zbl
Cité par Sources :