Based on results of E. DiBenedetto and D. Hoff we propose an explicit finite-difference scheme for one dimensional Generalized Porous Medium Equations . The scheme allows to track the moving free boundaries, and captures the so-called hole filling phenomenon when free boundaries collide. We prove the convergence of the discrete solution when the mesh parameter . Finally, we provide numerical evidence of the convergence of the scheme.
Mots-clés : Generalized porous medium equation, interface tracking, hole filling, finite-difference
@article{M2AN_2016__50_4_1011_0, author = {Monsaingeon, L\'eonard}, title = {An explicit finite-difference scheme for one-dimensional {Generalized} {Porous} {Medium} {Equations:} {Interface} tracking and the hole filling problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1011--1033}, publisher = {EDP-Sciences}, volume = {50}, number = {4}, year = {2016}, doi = {10.1051/m2an/2015063}, zbl = {1457.65059}, mrnumber = {3521710}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015063/} }
TY - JOUR AU - Monsaingeon, Léonard TI - An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1011 EP - 1033 VL - 50 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015063/ DO - 10.1051/m2an/2015063 LA - en ID - M2AN_2016__50_4_1011_0 ER -
%0 Journal Article %A Monsaingeon, Léonard %T An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1011-1033 %V 50 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015063/ %R 10.1051/m2an/2015063 %G en %F M2AN_2016__50_4_1011_0
Monsaingeon, Léonard. An explicit finite-difference scheme for one-dimensional Generalized Porous Medium Equations: Interface tracking and the hole filling problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1011-1033. doi : 10.1051/m2an/2015063. http://www.numdam.org/articles/10.1051/m2an/2015063/
L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford, New York (2000). | MR | Zbl
Regularity properties of flows through porous media: The interface. Arch. Rational Mech. Anal. 37 (1970) 1–10. | DOI | MR | Zbl
,Regularity propeties of flows through porous media. SIAM J. Appl. Math. 17 (1969) 461–467. | DOI | MR | Zbl
,Régularité des solutions de l’équation des milieux poreux dans . C. R. Acad. Sci. Paris Sér. A-B 288 (1979) A103–A105. | MR | Zbl
and ,Lipschitz continuity of solutions and interfaces of the -dimensional porous medium equation. Indiana Univ. Math. J. 36 (1987) 373–401. | DOI | MR | Zbl
, , and ,regularity of the free boundary for the -dimensional porous media equation. Commun. Pure Appl. Math. 43 (1990) 885–902. | DOI | MR | Zbl
and ,Regularizing effects for . Trans. Amer. Math. Soc. 274 (1982) 159–168. | MR | Zbl
and ,Nonnegative solutions of generalized porous medium equations. Rev. Mat. Iberoamericana 2 (1986) 267–305. | DOI | MR | Zbl
and ,P. Daskalopoulos and C.E. Kenig, Degenerate diffusions. Initial value problems and local regularity theory. Vol. 1 of EMS Tracts Math. European Mathematical Society (EMS), Zürich (2007). | MR | Zbl
Free-boundary regularity for generalized porous medium equations. Commun. Pure Appl. Anal. 2 (2003) 481–494. | DOI | MR | Zbl
and ,Regularity of solutions and interfaces of a generalized porous medium equation in . Ann. Mat. Pura Appl. 158 (74) 51–74. | MR | Zbl
and ,F. del Teso and J.L. Vázquezn, Finite difference method for a general fractional porous medium equation. Preprint arXiv:1307.2474 (2013).
E. DiBenedetto, Degenerate parabolic equations. Universitext. Springer-Verlag, New York (1993). | MR | Zbl
An interface tracking algorithm for the porous medium equation. Trans. Amer. Math. Soc. 284 (1984) 463–500. | DOI | MR | Zbl
and ,Hölder continuity of solutions of parabolic equations. J. London Math. Soc. 13 (1976) 103–106. | DOI | MR | Zbl
,A finite difference approach to some degenerate nonlinear parabolic equations. SIAM J. Appl. Math. 20 (223) 199–223. | MR | Zbl
and ,A linearly implicit finite-difference scheme for the one-dimensional porous medium equation. Math. Comput. 45 (1985) 23–33. | DOI | MR | Zbl
,A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal. 40 (2002) 945–964. | DOI | MR | Zbl
and ,Continuity of solutions of a singular parabolic equation. Nonlin. Anal. 7 (1983) 387–409. | DOI | MR | Zbl
,Numerical approximations to interface curves for a porous media equation. Hiroshima Math. J. 13 (1983) 273–294. | DOI | MR | Zbl
and ,Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. J. Math-Industry 3 (2011) 61–68. | MR | Zbl
,J.L. Vázquez, The porous medium equation. Oxford Math. Monogr. The Clarendon Press, Oxford University Press, Oxford (2007). Mathematical theory. | MR | Zbl
Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38 (2009) 127–148. | DOI | MR | Zbl
and ,Cité par Sources :