We investigate a finite element approximation of an initial boundary value problem associated with parabolic Partial Differential Equations endowed with mixed time varying boundary conditions, switching from essential to natural and vice versa. The switching occurs both in time and in different portions of the boundary. For this problem, we apply and extend the Nitsche’s method presented in [Juntunen and Stenberg, Math. Comput. (2009)] to the case of mixed time varying boundary conditions. After proving existence and numerical stability of the full discrete numerical solution obtained by using the -method for time discretization, we present and discuss a numerical test that compares our method to a standard approach based on remeshing and projection procedures.
Mots-clés : Nitsche’s method, parabolic problems, mixed time varying boundary conditions, stability analysis, finite element method
@article{M2AN_2016__50_2_541_0, author = {Tagliabue, Anna and Ded\`e, Luca and Quarteroni, Alfio}, title = {Nitsche{\textquoteright}s method for parabolic partial differential equations with mixed time varying boundary conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {541--563}, publisher = {EDP-Sciences}, volume = {50}, number = {2}, year = {2016}, doi = {10.1051/m2an/2015054}, mrnumber = {3482554}, zbl = {1382.65327}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015054/} }
TY - JOUR AU - Tagliabue, Anna AU - Dedè, Luca AU - Quarteroni, Alfio TI - Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 541 EP - 563 VL - 50 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015054/ DO - 10.1051/m2an/2015054 LA - en ID - M2AN_2016__50_2_541_0 ER -
%0 Journal Article %A Tagliabue, Anna %A Dedè, Luca %A Quarteroni, Alfio %T Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 541-563 %V 50 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015054/ %R 10.1051/m2an/2015054 %G en %F M2AN_2016__50_2_541_0
Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio. Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 541-563. doi : 10.1051/m2an/2015054. http://www.numdam.org/articles/10.1051/m2an/2015054/
Linear parabolic equations in Banach spaces with variable domains but constant interpolation spaces. Ann. Sc. Norm. Super. Pisa 13 (1986) 75–107. | Numdam | MR | Zbl
and ,R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). | MR | Zbl
An interior penalty Finite Element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl
,The Finite Element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. | DOI | MR | Zbl
,C. Baiocchi, Problemi misti per l’equazione del calore. Rendiconti del Seminario Matematico e Fisico di Milano. Università Studi Milano, XLI, Milan (1971) 3–38. | MR | Zbl
Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36 (2007) 12–26. | DOI | MR | Zbl
and ,Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196 (2007) 4853–4862. | DOI | MR | Zbl
, , , and ,J. Bergh and J. Löfström, Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, Heidelberg, New York (1976). | MR | Zbl
Parabolic problems with mixed time dependent lateral conditions. Commun. Partial Differ. Equ. 7 (1982) 134–156. | DOI | MR | Zbl
, , and ,Boundary value problems with mixed lateral conditions for parabolic operators. Ann. Mat. Pura Appl. 131 (1982) 375–413. | DOI | MR | Zbl
, and ,F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
J. Butcher, The Numerical Analysis of Ordinary Differential Equations. Wiley, New York (1987). | MR
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004) 2565–2580. | DOI | MR | Zbl
, , and ,A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | MR | Zbl
New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl
,Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. | DOI | MR | Zbl
and ,Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 19 (1961) 93–125. | DOI | MR | Zbl
,J.L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications. Vol. I, II. Springer-Verlag, Berlin (1972). | MR | Zbl
Sur une classe d’espaces d’interpolation. Publ. Math. Inst. Hautes Étud. Sci. 19 (1964) 5–68. | DOI | Numdam | MR | Zbl
and ,Problemi al contorno misti per I’equazione del calore. Rend. Semin. Mat. Univ. Padova 24 (1955) 1–28. | Numdam | MR | Zbl
,Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. 36 (1971) 9–15. | DOI | MR | Zbl
,An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Scientific Comput. 30 (2008) 731–763. | DOI | MR | Zbl
and ,A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491–519. | DOI | MR | Zbl
, , and ,A. Quarteroni, Numerical Models for Differential Problems. Springer-Verlag, Milan (2014). | MR | Zbl
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, Heidelberg (1994). | MR | Zbl
B. Rivière, Discontinuous Galerkin Methods For Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia, PA, USA (2008). | MR | Zbl
A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902–931. | DOI | MR | Zbl
, , and ,Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Pure Appl. Math. 76 (1997) 321–351. | DOI | MR | Zbl
,Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43 (2005) 195–219. | DOI | MR | Zbl
and ,A. Tagliabue, Ph.D. thesis, Politecnico di Milano, Italy. In preparation (2016).
R. Temam, Navier-Stokes Equations. Theory and Numerical Results. North-Holland Publishing Company, Amsterdam, New York-Oxford (1977). | MR | Zbl
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, Berlin, Heidelberg (1984). | MR | Zbl
Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46 (2011) 100–123. | DOI | MR | Zbl
,An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. | DOI | MR | Zbl
,Cité par Sources :