Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 541-563.

We investigate a finite element approximation of an initial boundary value problem associated with parabolic Partial Differential Equations endowed with mixed time varying boundary conditions, switching from essential to natural and vice versa. The switching occurs both in time and in different portions of the boundary. For this problem, we apply and extend the Nitsche’s method presented in [Juntunen and Stenberg, Math. Comput. (2009)] to the case of mixed time varying boundary conditions. After proving existence and numerical stability of the full discrete numerical solution obtained by using the θ-method for time discretization, we present and discuss a numerical test that compares our method to a standard approach based on remeshing and projection procedures.

DOI : 10.1051/m2an/2015054
Classification : 35K20, 65M12, 65M60, 68U20, 74S05
Mots-clés : Nitsche’s method, parabolic problems, mixed time varying boundary conditions, stability analysis, finite element method
Tagliabue, Anna 1 ; Dedè, Luca 2 ; Quarteroni, Alfio 1, 2

1 MOX – Modeling and Scientific Computing, Mathematics Department “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy.
2 CMCS – Chair of Modeling and Scientific Computing, MATHICSE – Mathematics Institute of Computational Science and Engineering, EPFL – École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland
@article{M2AN_2016__50_2_541_0,
     author = {Tagliabue, Anna and Ded\`e, Luca and Quarteroni, Alfio},
     title = {Nitsche{\textquoteright}s method for parabolic partial differential equations with mixed time varying boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {541--563},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015054},
     mrnumber = {3482554},
     zbl = {1382.65327},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015054/}
}
TY  - JOUR
AU  - Tagliabue, Anna
AU  - Dedè, Luca
AU  - Quarteroni, Alfio
TI  - Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 541
EP  - 563
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015054/
DO  - 10.1051/m2an/2015054
LA  - en
ID  - M2AN_2016__50_2_541_0
ER  - 
%0 Journal Article
%A Tagliabue, Anna
%A Dedè, Luca
%A Quarteroni, Alfio
%T Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 541-563
%V 50
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015054/
%R 10.1051/m2an/2015054
%G en
%F M2AN_2016__50_2_541_0
Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio. Nitsche’s method for parabolic partial differential equations with mixed time varying boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 541-563. doi : 10.1051/m2an/2015054. http://www.numdam.org/articles/10.1051/m2an/2015054/

P. Acquistapace and B. Terreni, Linear parabolic equations in Banach spaces with variable domains but constant interpolation spaces. Ann. Sc. Norm. Super. Pisa 13 (1986) 75–107. | Numdam | MR | Zbl

R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). | MR | Zbl

D.N. Arnold, An interior penalty Finite Element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl

I. Babuška, The Finite Element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. | DOI | MR | Zbl

C. Baiocchi, Problemi misti per l’equazione del calore. Rendiconti del Seminario Matematico e Fisico di Milano. Università Studi Milano, XLI, Milan (1971) 3–38. | MR | Zbl

Y. Bazilevs and T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36 (2007) 12–26. | DOI | MR | Zbl

Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196 (2007) 4853–4862. | DOI | MR | Zbl

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, Heidelberg, New York (1976). | MR | Zbl

A. Bove, B. Franchi, and E. Obrecht, Parabolic problems with mixed time dependent lateral conditions. Commun. Partial Differ. Equ. 7 (1982) 134–156. | DOI | MR | Zbl

A. Bove, B. Franchi and E. Obrecht, Boundary value problems with mixed lateral conditions for parabolic operators. Ann. Mat. Pura Appl. 131 (1982) 375–413. | DOI | MR | Zbl

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl

J. Butcher, The Numerical Analysis of Ordinary Differential Equations. Wiley, New York (1987). | MR

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

C. Dawson, S. Sun, and M. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004) 2565–2580. | DOI | MR | Zbl

A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | MR | Zbl

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. | DOI | MR | Zbl

T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 19 (1961) 93–125. | DOI | MR | Zbl

J.L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications. Vol. I, II. Springer-Verlag, Berlin (1972). | MR | Zbl

J.L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation. Publ. Math. Inst. Hautes Étud. Sci. 19 (1964) 5–68. | DOI | Numdam | MR | Zbl

E. Magenes, Problemi al contorno misti per I’equazione del calore. Rend. Semin. Mat. Univ. Padova 24 (1955) 1–28. | Numdam | MR | Zbl

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. 36 (1971) 9–15. | DOI | MR | Zbl

F. Nobile and C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Scientific Comput. 30 (2008) 731–763. | DOI | MR | Zbl

J.T. Oden, I. Babǔska, and C. Baumann, A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491–519. | DOI | MR | Zbl

A. Quarteroni, Numerical Models for Differential Problems. Springer-Verlag, Milan (2014). | MR | Zbl

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, Heidelberg (1994). | MR | Zbl

B. Rivière, Discontinuous Galerkin Methods For Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia, PA, USA (2008). | MR | Zbl

B. Rivière, M.F. Wheeler, and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902–931. | DOI | MR | Zbl

G. Savaré, Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Pure Appl. Math. 76 (1997) 321–351. | DOI | MR | Zbl

S. Sun and M.F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43 (2005) 195–219. | DOI | MR | Zbl

A. Tagliabue, Ph.D. thesis, Politecnico di Milano, Italy. In preparation (2016).

R. Temam, Navier-Stokes Equations. Theory and Numerical Results. North-Holland Publishing Company, Amsterdam, New York-Oxford (1977). | MR | Zbl

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, Berlin, Heidelberg (1984). | MR | Zbl

C. Vergara, Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46 (2011) 100–123. | DOI | MR | Zbl

M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. | DOI | MR | Zbl

Cité par Sources :