A relation between a dynamic fracture model and quasi-static evolution
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 77-91.

We study the relations between a dynamic model proposed by Bourdin, Larsen and Richardson, and quasi-static fracture evolution. We assume the dynamic model has the boundary displacements of the material as input, and consider time-rescaled solutions of this model associated to a sequence of boundary conditions with speed going to zero. Next, we study whether this rescaled sequence converges to a function satisfying quasi-static fracture evolution. Under some hypotheses and assuming the speed of crack propagation slows down following the deceleration of boundary displacements, our main result shows that (up to a subsequence) the rescaled solutions converge to a quasi-static evolution.

Reçu le :
DOI : 10.1051/m2an/2015032
Classification : 35Q74, 74R10, 74R15
Mots clés : Dynamic fracture model, quasi-static fracture model, energy balance, vanishing viscosity
Versieux, Henrique 1

1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brasil
@article{M2AN_2016__50_1_77_0,
     author = {Versieux, Henrique},
     title = {A relation between a dynamic fracture model and quasi-static evolution},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {77--91},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/m2an/2015032},
     zbl = {1334.35343},
     mrnumber = {3460102},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015032/}
}
TY  - JOUR
AU  - Versieux, Henrique
TI  - A relation between a dynamic fracture model and quasi-static evolution
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 77
EP  - 91
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015032/
DO  - 10.1051/m2an/2015032
LA  - en
ID  - M2AN_2016__50_1_77_0
ER  - 
%0 Journal Article
%A Versieux, Henrique
%T A relation between a dynamic fracture model and quasi-static evolution
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 77-91
%V 50
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015032/
%R 10.1051/m2an/2015032
%G en
%F M2AN_2016__50_1_77_0
Versieux, Henrique. A relation between a dynamic fracture model and quasi-static evolution. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 1, pp. 77-91. doi : 10.1051/m2an/2015032. http://www.numdam.org/articles/10.1051/m2an/2015032/

L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | DOI | MR | Zbl

B. Bourdin, C.J. Larsen and C. Richardson, A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fracture 168 (2011) 133–143. | DOI | Zbl

A. Braides, Γ-convergence for beginners. Vol. 22 of Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2002). | MR | Zbl

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Rational. Mech. Anal. 167 (2003) 211–233. | DOI | MR | Zbl

G. Dal Maso, and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Methods Appl. Sci. 12 (2002) 1773–1799. | DOI | MR | Zbl

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Rational. Mech. Anal. 162 (2002) 101–135. | DOI | MR | Zbl

G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational. Mech. Anal. 176 (2005) 165–225. | DOI | MR | Zbl

E. De Giorgi and G. Dal Maso, Γ-convergence and calculus of variations. In Mathematical theories of optimization (Genova, 1981). Vol. 979 of Lect. Notes Math. Springer, Berlin (1983) 121–143. | MR | Zbl

G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | DOI | MR | Zbl

G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003) 1465–1500. | DOI | MR | Zbl

A. Giacomini, Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22 (2005) 129–172. | DOI | MR | Zbl

A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London (1920) 163–198.

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18 (2008) 1529–1569. | DOI | MR | Zbl

C.J. Larsen, Epsilon-stable quasi-static brittle fracture evolution. Commun. Pure Appl. Math. 63 (2010) 630–654. | MR | Zbl

C.J. Larsen, C. Ortner and E. Süli, Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010) 1021–1048. | DOI | MR | Zbl

A. Mielke, Differential, energetic, and metric formulations for rate-independent processes. In Nonlin. Partial Differ. Equ. Appl. Vol. 2028 of Lect. Notes Math. Springer, Heidelberg (2011) 87–170. | MR | Zbl

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith’s criterion. Math. Models Methods Appl. Sci. 18 (2008) 1895–1925. | DOI | MR | Zbl

T. Roubíček, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal. 45 (2013) 101–126. | DOI | MR | Zbl

Cité par Sources :