Benamou and Brenier formulation of Monge transportation problem [J.-D. Benamou and Y. Brenier, Numer. Math. 84 (2000) 375–393.] has proven to be of great interest in image processing to compute warpings and distances between pair of images [S. Agenent, S. Haker and A. Tannenbaum, SIAM J. Math. Anal. 35 (2003) 61–97]. One requirement for the algorithm to work is to interpolate densities of same mass. In most applications to image interpolation, this is a serious limitation. Existing approaches [J.-D. Benamou, ESAIM: M2AN 37 (2003) 851–868; B. Piccoli and F. Rossi, Arch. Rational Mech. Anal. 211 (2014) 335–358; B. Piccoli and F. Rossi, Preprint arXiv:1304.7014 (2014)]. to overcome this caveat are reviewed, and discussed. Due to the mix between transport and interpolation, these models can produce instantaneous motion at finite range. In this paper we propose new methods, parameter-free, for interpolating unbalanced densities. One of our motivations is the application to interpolation of growing tumor images.
DOI : 10.1051/m2an/2015025
Mots-clés : Optimal transport, image interpolation, numerical optimization
@article{M2AN_2015__49_6_1717_0, author = {Lombardi, Damiano and Maitre, Emmanuel}, title = {Eulerian models and algorithms for unbalanced optimal transport}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1717--1744}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015025}, mrnumber = {3423273}, zbl = {1334.65112}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015025/} }
TY - JOUR AU - Lombardi, Damiano AU - Maitre, Emmanuel TI - Eulerian models and algorithms for unbalanced optimal transport JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1717 EP - 1744 VL - 49 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015025/ DO - 10.1051/m2an/2015025 LA - en ID - M2AN_2015__49_6_1717_0 ER -
%0 Journal Article %A Lombardi, Damiano %A Maitre, Emmanuel %T Eulerian models and algorithms for unbalanced optimal transport %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1717-1744 %V 49 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015025/ %R 10.1051/m2an/2015025 %G en %F M2AN_2015__49_6_1717_0
Lombardi, Damiano; Maitre, Emmanuel. Eulerian models and algorithms for unbalanced optimal transport. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1717-1744. doi : 10.1051/m2an/2015025. http://www.numdam.org/articles/10.1051/m2an/2015025/
L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks. Springer Berlin Heidelberg (2013) 1–155. | MR
Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. | DOI | MR | Zbl
, and ,Numerical resolution of an “unbalanced” mass transfer problem. ESAIM: M2AN 37 (2003) 851–868. | DOI | Numdam | MR | Zbl
,A computational fluid mechanics solution of the Monge-Katorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl
and ,Mixed -Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111 (2001) 255–271. | DOI | MR | Zbl
and ,Numerical Analysis of a Multi-Phasic Mass Transport Problem. Int. J. Numer. Meth. Fluids 40 (2002) 21–30. | Zbl
, and ,J.-D. Benamou, B. Froese and A. Oberman, Numerical solution of the second boundary value problem for the Elliptic Monge−Ampère equation. HAL preprint on hal.inria.fr (2012).
J.-D. Benamou, B. Froese, A. Oberman, Numerical Solution of the Optimal Transportation Problem via viscosity solutions for the Monge−Ampère equation. Preprint arXiv:1208.4873 (2012). | MR
Numerical methods for fully nonlinear elliptic equations of the Monge−Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. | DOI | MR | Zbl
and ,A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. 94 (2010) 107–130. | DOI | MR | Zbl
and ,M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. Stud. Math. Appl. North-Holland, Amsterdam (1983) | Zbl
K. Guittet, Extended Kantorovich norms: a tool for optimization. INRIA RR-4402 (2002) http://hal.inria.fr/inria-00072186/PDF/RR-4402.pdf
An extension of the Kantorovich norm. Contemp. Math. 226 (1999) 13–130. | MR | Zbl
,On a space of completely additive functions. Vestnik Leningrad. Univ 13 (1958) 52–59. | MR | Zbl
and ,Numerical solution of the Monge-Ampre equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. | DOI | MR | Zbl
and ,Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. | DOI | MR | Zbl
,R. Peyre, Non-asymptotic equivalence between distance and norm. Preprint (2011). | arXiv
B. Piccoli and F. Rossi, A generalized Benamou−Brenier formula for mass-varying densities. Preprint (2014). | arXiv
Generalized Wasserstein distance and its application to transport equations with source. Arc. Rational Mech. Anal. 211 (2014) 335–358. | DOI | MR | Zbl
and ,C. Villani, Topics in optimal transportation. In vol. 50 of Grad. Stud. Math. AMS (2003). | MR | Zbl
Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24 (2006) 209–228. | DOI | MR | Zbl
, and ,Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, Mathematics in Brain Imaging 45 (2009) S61–S72.
, and and ,The Semigeostrophic Equations Discretized in reference and dual variables. Arch. Ration. Mech. Anal. 185 (2007) 341–363. | DOI | MR | Zbl
and and ,Cité par Sources :