Eulerian models and algorithms for unbalanced optimal transport
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1717-1744.

Benamou and Brenier formulation of Monge transportation problem [J.-D. Benamou and Y. Brenier, Numer. Math. 84 (2000) 375–393.] has proven to be of great interest in image processing to compute warpings and distances between pair of images [S. Agenent, S. Haker and A. Tannenbaum, SIAM J. Math. Anal. 35 (2003) 61–97]. One requirement for the algorithm to work is to interpolate densities of same mass. In most applications to image interpolation, this is a serious limitation. Existing approaches [J.-D. Benamou, ESAIM: M2AN 37 (2003) 851–868; B. Piccoli and F. Rossi, Arch. Rational Mech. Anal. 211 (2014) 335–358; B. Piccoli and F. Rossi, Preprint arXiv:1304.7014 (2014)]. to overcome this caveat are reviewed, and discussed. Due to the mix between transport and L 2 interpolation, these models can produce instantaneous motion at finite range. In this paper we propose new methods, parameter-free, for interpolating unbalanced densities. One of our motivations is the application to interpolation of growing tumor images.

Reçu le :
DOI : 10.1051/m2an/2015025
Classification : 65D18, 35Q93, 65K10
Mots-clés : Optimal transport, image interpolation, numerical optimization
Lombardi, Damiano 1 ; Maitre, Emmanuel 2

1 Equipe REO, INRIA Rocquencourt, France.
2 Laboratoire Jean Kuntzmann, Grenoble University and CNRS, France.
@article{M2AN_2015__49_6_1717_0,
     author = {Lombardi, Damiano and Maitre, Emmanuel},
     title = {Eulerian models and algorithms for unbalanced optimal transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1717--1744},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015025},
     mrnumber = {3423273},
     zbl = {1334.65112},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015025/}
}
TY  - JOUR
AU  - Lombardi, Damiano
AU  - Maitre, Emmanuel
TI  - Eulerian models and algorithms for unbalanced optimal transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1717
EP  - 1744
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015025/
DO  - 10.1051/m2an/2015025
LA  - en
ID  - M2AN_2015__49_6_1717_0
ER  - 
%0 Journal Article
%A Lombardi, Damiano
%A Maitre, Emmanuel
%T Eulerian models and algorithms for unbalanced optimal transport
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1717-1744
%V 49
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015025/
%R 10.1051/m2an/2015025
%G en
%F M2AN_2015__49_6_1717_0
Lombardi, Damiano; Maitre, Emmanuel. Eulerian models and algorithms for unbalanced optimal transport. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1717-1744. doi : 10.1051/m2an/2015025. http://www.numdam.org/articles/10.1051/m2an/2015025/

L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks. Springer Berlin Heidelberg (2013) 1–155. | MR

S. Agenent, S. Haker and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. | DOI | MR | Zbl

J.-D. Benamou, Numerical resolution of an “unbalanced” mass transfer problem. ESAIM: M2AN 37 (2003) 851–868. | DOI | Numdam | MR | Zbl

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution of the Monge-Katorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl

J.-D. Benamou and Y. Brenier, Mixed L 2 -Wasserstein optimal mapping between prescribed density functions. J. Optim. Theory Appl. 111 (2001) 255–271. | DOI | MR | Zbl

J.-D. Benamou, Y. Brenier and K. Guittet, Numerical Analysis of a Multi-Phasic Mass Transport Problem. Int. J. Numer. Meth. Fluids 40 (2002) 21–30. | Zbl

J.-D. Benamou, B. Froese and A. Oberman, Numerical solution of the second boundary value problem for the Elliptic Monge−Ampère equation. HAL preprint on hal.inria.fr (2012).

J.-D. Benamou, B. Froese, A. Oberman, Numerical Solution of the Optimal Transportation Problem via viscosity solutions for the Monge−Ampère equation. Preprint arXiv:1208.4873 (2012). | MR

E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge−Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. | DOI | MR | Zbl

A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. 94 (2010) 107–130. | DOI | MR | Zbl

M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. Stud. Math. Appl. North-Holland, Amsterdam (1983) | Zbl

K. Guittet, Extended Kantorovich norms: a tool for optimization. INRIA RR-4402 (2002) http://hal.inria.fr/inria-00072186/PDF/RR-4402.pdf

L.G. Hanin, An extension of the Kantorovich norm. Contemp. Math. 226 (1999) 13–130. | MR | Zbl

L.V. Kantorovich and G.Sh. Rubinstein, On a space of completely additive functions. Vestnik Leningrad. Univ 13 (1958) 52–59. | MR | Zbl

G. Loeper and F. Rapetti, Numerical solution of the Monge-Ampre equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. | DOI | MR | Zbl

R. Mccann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. | DOI | MR | Zbl

R. Peyre, Non-asymptotic equivalence between W 2 distance and H -1 norm. Preprint (2011). | arXiv

B. Piccoli and F. Rossi, A generalized Benamou−Brenier formula for mass-varying densities. Preprint (2014). | arXiv

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source. Arc. Rational Mech. Anal. 211 (2014) 335–358. | DOI | MR | Zbl

C. Villani, Topics in optimal transportation. In vol. 50 of Grad. Stud. Math. AMS (2003). | MR | Zbl

M. Miller, A. Trouve and L. Younes, Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24 (2006) 209–228. | DOI | MR | Zbl

T. Vercauteren, X. Pennec and A. Perchant and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, Mathematics in Brain Imaging 45 (2009) S61–S72.

M. Cullen and W. Gangbo and G. Pisante, The Semigeostrophic Equations Discretized in reference and dual variables. Arch. Ration. Mech. Anal. 185 (2007) 341–363. | DOI | MR | Zbl

Cité par Sources :