Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1511-1523.

We introduce a monotone (degenerate elliptic) discretization of the Monge−Ampere operator, on domains discretized on cartesian grids. The scheme is consistent provided the solution hessian condition number is uniformly bounded. Our approach enjoys the simplicity of the Wide Stencil method [B.D. Froese and A.M. Oberman, J. Comput. Phys. 230 (2011) 818–834.], but significantly improves its accuracy using ideas from discretizations of optimal transport based on power diagrams [F. Aurenhammer, F. Hoffmann and B. Aronov, Algorithmica (1998)]. We establish the global convergence of a damped Newton solver for the discrete system of equations. Numerical experiments, in three dimensions, illustrate the scheme efficiency.

Reçu le :
DOI : 10.1051/m2an/2015016
Classification : 65N06, 65N12, 35B50, 35J60, 49L25
Mots clés : Viscosity solutions, monotone numerical scheme, finite difference methods, Monge−Ampere operator
Mirebeau, Jean-Marie 1

1 CNRS, University Paris Dauphine, UMR 7534, Laboratory CEREMADE, Paris, France
@article{M2AN_2015__49_5_1511_0,
     author = {Mirebeau, Jean-Marie},
     title = {Discretization of the 3d monge\ensuremath{-}ampere operator, between wide stencils and power diagrams},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1511--1523},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015016},
     mrnumber = {3423234},
     zbl = {1330.65161},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015016/}
}
TY  - JOUR
AU  - Mirebeau, Jean-Marie
TI  - Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1511
EP  - 1523
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015016/
DO  - 10.1051/m2an/2015016
LA  - en
ID  - M2AN_2015__49_5_1511_0
ER  - 
%0 Journal Article
%A Mirebeau, Jean-Marie
%T Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1511-1523
%V 49
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015016/
%R 10.1051/m2an/2015016
%G en
%F M2AN_2015__49_5_1511_0
Mirebeau, Jean-Marie. Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1511-1523. doi : 10.1051/m2an/2015016. http://www.numdam.org/articles/10.1051/m2an/2015016/

F. Aurenhammer, F. Hoffmann and B. Aronov, Minkowski-type theorems and least-squares clustering. Algorithmica 20 (1998) 61–76. | DOI | MR | Zbl

J.D. Benamou and B.D. Froese, A viscosity framework for computing Pogorelov solutions of the Monge−Ampere equation. Preprint (2014) . | arXiv

J.-D. Benamou, F. Collino and J.-M. Mirebeau, Monotone and Consistent discretization of the Monge−Ampere operator Preprint (2014) . | arXiv | MR

S.C. Brenner and M. Neilan, Finite element approximations of the three dimensional Monge-Ampère equation. ESAIM: M2AN 46 (2012) 979–1001. | DOI | Numdam | MR | Zbl

M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. | DOI | MR | Zbl

J.H. Conway and N.J.A. Sloane, Low-Dimensional Lattices. VI. Voronoi Reduction of Three-Dimensional Lattices. Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 436 (1992) 55–68. | MR | Zbl

S.C. Eisenstat and H.F. Walker, Globally convergent inexact Newton methods. SIAM J. Optim. 4 (1994) 393–422. | DOI | MR | Zbl

B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230 (2011) 818–834. | DOI | MR | Zbl

B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51 (2013) 423–444. | DOI | MR | Zbl

C.E. Gutiérrez, The Monge-Ampère Equation. In Progr. Nonlin. Differ. Eqs. Appl. Springer (2001). | MR | Zbl

B. Lévy, A numerical algorithm for L 2 semi-discrete optimal transport in 3D. To appear in ESAIM: M2AN (2015). Doi:. | DOI | MR

G. Loeper and F. Rapetti, Numerical solution of the Monge-Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris (2005). | MR | Zbl

Q. Merigot, A Multiscale approach to optimal transport. Computer Graphics Forum 30 (2011) 1583–1592. | DOI

M. Neilan, Quadratic finite element approximations of the Monge-Ampère equation. J. Sci. Comput. 54 (2012) 200–226. | DOI | MR | Zbl

A.M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44 (2006) 879–895. | DOI | MR | Zbl

V.I. Oliker and L.D. Prussner, On the numerical solution of the equation 2 z x 2 2 z y 2 - 2 z xy 2 =f and its discretizations, I. Numer. Math. 54 (1988) 271–293. | DOI | MR | Zbl

F.P. Preparata and M. Shamos, Computational Geometry. Springer (2012). | Zbl

Cité par Sources :