We consider a two-point boundary value problem involving a Riemann−Liouville fractional derivative of order
DOI : 10.1051/m2an/2015010
Mots-clés : Finite element method, Riemann−Liouville derivative, fractional boundary value problem, error estimate, singularity reconstruction
@article{M2AN_2015__49_5_1261_0, author = {Jin, Bangti and Zhou, Zhi}, title = {A {Finite} {Element} {Method} with {Singularity} {Reconstruction} for {Fractional} {Boundary} {Value} {Problems}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1261--1283}, publisher = {EDP-Sciences}, volume = {49}, number = {5}, year = {2015}, doi = {10.1051/m2an/2015010}, zbl = {1332.65115}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2015010/} }
TY - JOUR AU - Jin, Bangti AU - Zhou, Zhi TI - A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1261 EP - 1283 VL - 49 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015010/ DO - 10.1051/m2an/2015010 LA - en ID - M2AN_2015__49_5_1261_0 ER -
%0 Journal Article %A Jin, Bangti %A Zhou, Zhi %T A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1261-1283 %V 49 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015010/ %R 10.1051/m2an/2015010 %G en %F M2AN_2015__49_5_1261_0
Jin, Bangti; Zhou, Zhi. A Finite Element Method with Singularity Reconstruction for Fractional Boundary Value Problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1261-1283. doi : 10.1051/m2an/2015010. https://www.numdam.org/articles/10.1051/m2an/2015010/
R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edition. Elsevier/Academic Press, Amsterdam (2003). | Zbl
Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005) 495–505,. | DOI | Zbl
and ,The fractional-order governing equation of Lévy motion. Water Resour. Res. 36 (2000) 1413–1424. | DOI
, and ,A finite element method using singular functions for the Poisson equation: corner singularities. SIAM J. Numer. Anal. 39 (2001) 286–299. | DOI | Zbl
and ,Front dynamics in reaction-diffusion systems with Levy flights. Phys. Rev. Lett. 91 (2003) 018302. | DOI
, and ,Nondiffusive transport in plasma turbulence: a fractional diffusion approach. Phys. Rev. Lett. 94 (2005) 065003. | DOI
, and ,Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47 (2013) 1845–1864. | DOI | Numdam | Zbl
and ,Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22 (1974) 99–109. | DOI | Zbl
, and ,A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | Zbl
Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Eqs. 22 (2006) 558–576. | DOI | Zbl
and ,B. Jin, R. Lazarov, J. Pasciak and W. Rundell, Variational formulation of problems involving fractional order differential operators. To appear in Math. Comput. (2015).
Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52 (2014) 2272–2294. | DOI | Zbl
, , and ,A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). | Zbl
The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | Zbl
and ,S.G. Samko, A.A. Kilbas and O.I. Marichev. Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993). | Zbl
An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | DOI | Zbl
,Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228 (2009) 4038–4054. | DOI | Zbl
,A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813–823. | DOI | Zbl
and ,W. Tian, H. Zhou and W. Deng, A class of second-order finite difference approximations for solving space fractional diffusion equations. To appear in Math. Comput. (2015).
Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51 (2013) 1088–1107. | DOI | Zbl
and ,K. Yoshida, Functional Analysis, 6th edition. Springer-Verlag, Berlin (1980).
Cité par Sources :