Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1239-1260.

We consider a model for the propagation and absorption of electromagnetic waves (in the time-harmonic regime) in a magnetised plasma. We present a rigorous derivation of the model and several boundary conditions modelling wave injection into the plasma. Then we propose several variational formulations, mixed and non-mixed, and prove their well-posedness thanks to a theorem by Sébelin et al. Finally, we propose a non-overlapping domain decomposition framework, show its well-posedness and equivalence with the one-domain formulation. These results appear strongly linked to the spectral properties of the plasma dielectric tensor.

Reçu le :
DOI : 10.1051/m2an/2015009
Classification : 35J57, 35Q60, 65N55
Mots-clés : Magnetised plasma, Maxwell’s equations, domain decomposition
Back, Aurore 1 ; Hattori, Takashi 1 ; Labrunie, Simon 1 ; Roche, Jean-Rodolphe 1 ; Bertrand, Pierre 2

1 Universitéde Lorraine, CNRS, Institut Elie Cartan de Lorraine, UMR 7502, 54506 Vandœuvre-lès-Nancy, France
2 Université de Lorraine, CNRS, Institut Jean Lamour, UMR 7198, 54011 Nancy, France
@article{M2AN_2015__49_5_1239_0,
     author = {Back, Aurore and Hattori, Takashi and Labrunie, Simon and Roche, Jean-Rodolphe and Bertrand, Pierre},
     title = {Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1239--1260},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015009},
     mrnumber = {3423223},
     zbl = {1328.35227},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015009/}
}
TY  - JOUR
AU  - Back, Aurore
AU  - Hattori, Takashi
AU  - Labrunie, Simon
AU  - Roche, Jean-Rodolphe
AU  - Bertrand, Pierre
TI  - Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1239
EP  - 1260
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015009/
DO  - 10.1051/m2an/2015009
LA  - en
ID  - M2AN_2015__49_5_1239_0
ER  - 
%0 Journal Article
%A Back, Aurore
%A Hattori, Takashi
%A Labrunie, Simon
%A Roche, Jean-Rodolphe
%A Bertrand, Pierre
%T Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1239-1260
%V 49
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015009/
%R 10.1051/m2an/2015009
%G en
%F M2AN_2015__49_5_1239_0
Back, Aurore; Hattori, Takashi; Labrunie, Simon; Roche, Jean-Rodolphe; Bertrand, Pierre. Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1239-1260. doi : 10.1051/m2an/2015009. http://www.numdam.org/articles/10.1051/m2an/2015009/

A. Alonso and A. Valli, A domain decomposition approach for heterogenous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 147 (1997) 97–112. | DOI | MR | Zbl

F. Assous, P. Degond, E. Heintzé, P.A. Raviart and J. Segré, On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993) 222–237. | DOI | MR | Zbl

F. Assous, P. Degond and J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by a P 1 conforming finite element method. J. Comput. Phys. 128 (1996) 363–380. | DOI | MR | Zbl

F. Assous, J. Segré and E. Sonnendrücker, A domain decomposition method for the parallelization of a three-dimensional Maxwell solver based on a constrained formulation. Math. Comput. Simul. 81 (2011) 2371–2388. | DOI | MR | Zbl

M.Sh. Birman and M.Z. Solomyak, L 2 -Theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys 42 (1987) 75–96. | DOI | MR | Zbl

A. Bossavit, Electromagnétisme, en vue de la modélisation. Vol. 14 of Math. Appl. Springer-Verlag (1993). (in French) | MR | Zbl

M. Brambilla and A. Cardinali, Eikonal description of H.F. waves in toroidal plasmas. Plasma Phys. 24 (1982) 1187–1218. | DOI | MR

H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). English version: Functional analysis, Sobolev spaces and Partial Differential Equations. Springer-Verlag (2011). | MR

A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. | DOI | MR | Zbl

A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations.Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31–48. | DOI | MR | Zbl

P. Ciarlet Jr., Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Engrg. 194 (2005) 559–586. | DOI | MR | Zbl

P. Ciarlet Jr. and J. Zou, Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO Modél. Math. Anal. Num. 31 (1997) 213–250. | DOI | Numdam | MR | Zbl

M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221–276. | DOI | MR | Zbl

B. Després, L.M. Imbert-Gérard and R. Weder, Hybrid resonance of Maxwell’s equations in slab geometry. J. Math. Pures Appl. 101 (2014) 623–659. | DOI | MR | Zbl

B. Després, P. Joly and J.E. Roberts, A domain decomposition method for the harmonic Maxwell equations, in Iterative methods in linear algebra, edited by R. Beauwens and P. de Groen. North-Holland, Amsterdam (1992) 475–484. | MR | Zbl

O.G. Ernst and M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical analysis of multiscale problems, edited by I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl. Vol. 83 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Heidelberg (2012) 325–363. | MR | Zbl

R.J. Goldston and P.H. Rutherford, Introduction to plasma physics. Institute of Physics Publishing, Bristol (1995). | Zbl

T. Hattori, Décomposition de domaine pour la simulation Full-Wave dans un plasma froid. Ph.D. thesis, Université de Lorraine (2014). (in French)

L. Hörmander, The Analysis of Linear Partial Differential Operators. Springer-Verlag (1984). | MR | Zbl

J.D. Jackson, Classical electrodynamics. John Wiley & Sons, New York, London, Sydney (1962). | MR | Zbl

L.D. Landau, On the vibrations of the electronic plasma. J. Phys. (U.S.S.R) 10 (1946) 25–34. Published again in Collected papers of L.D. Landau. Pergamon Press (1965) 445–460. | MR | Zbl

T.P.A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer-Verlag (2008). | MR | Zbl

Y. Peysson, J.R. Roche, P. Bertrand, J.H. Chatenet, C. Kirsch, A. Mokrani and S. Labrunie, Mixed augmented formulation (MAVF) for lower hybrid full-wave calculations, in AIP Conf. Proc., vol. 1187. The 18th Topical Conference on Radio Frequency Power in Plasmas, edited by V. Bobkov, J.M. Noterdaeme (2009) 633–636.

Y. Peysson, E. Sébelin, X. Litaudon, D. Moreau, J.C. Miellou, M.M. Shoucri and I.P. Shkarofsky, Full Wave modelling of lower hybrid current drive in tokamaks. Nuclear Fusion 38 (1998) 939–944. | DOI

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999). | MR | Zbl

E. Sébelin, Développement des méthodes numériques pour la résolution de la propagation et de l’absorption de l’onde hybride dans les tokamaks. Ph.D. thesis, Université de Franche-Comté (1997). (In French)

E. Sébelin, J.C. Miellou, O. Lafitte, Y. Peysson, X. Litaudon and D. Moreau, Uniqueness and Existence Result Around Lax–Milgram Lemma: Application to Electromagnetic Waves Propagation in Tokamak Plasmas. Technical Report EUR-CEA-FC-1609 (Euratom-CEA Federation), online: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/017/30017036.pdf

T.H. Stix, Waves in plasmas. American Institute of Physics, New York (1992).

A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86 (2000) 733–752. | DOI | MR | Zbl

C. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2 (1980) 12–25. | DOI | Zbl

J.C. Wright, P.T. Bonoli, M. Brambilla, F. Meo, E. D’Azevedo, D.B. Batchelor, E.F. Jaeger, L.A. Berry, C.K. Phillips and A. Pletzer, Calculations of fast wave mode conversion and lower hybrid propagation in tokamaks. Phys. Plasmas 11 (2004) 2473–2479. | DOI

Cité par Sources :