For the nonconforming Crouzeix–Raviart boundary elements from [N. Heuer and F.-J. Sayas, Numer. Math. 112 (2009) 381–401], we develop and analyze a posteriori error estimators based on the methodology. We discuss the optimal rate of convergence for uniform mesh refinement, and present a numerical experiment with singular data where our adaptive algorithm recovers the optimal rate while uniform mesh refinement is sub-optimal. We also discuss the case of reduced regularity by standard geometric singularities to conjecture that, in this situation, non-uniformly refined meshes are not superior to quasi-uniform meshes for Crouzeix–Raviart boundary elements.
DOI : 10.1051/m2an/2015003
Mots-clés : Boundary element method, adaptive algorithm, nonconforming method, a posteriori error estimation
@article{M2AN_2015__49_4_1193_0, author = {Heuer, Norbert and Karkulik, Michael}, title = {Adaptive {Crouzeix{\textendash}Raviart} boundary element method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1193--1217}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2015003}, mrnumber = {3371908}, zbl = {1326.65166}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015003/} }
TY - JOUR AU - Heuer, Norbert AU - Karkulik, Michael TI - Adaptive Crouzeix–Raviart boundary element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1193 EP - 1217 VL - 49 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015003/ DO - 10.1051/m2an/2015003 LA - en ID - M2AN_2015__49_4_1193_0 ER -
%0 Journal Article %A Heuer, Norbert %A Karkulik, Michael %T Adaptive Crouzeix–Raviart boundary element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1193-1217 %V 49 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015003/ %R 10.1051/m2an/2015003 %G en %F M2AN_2015__49_4_1193_0
Heuer, Norbert; Karkulik, Michael. Adaptive Crouzeix–Raviart boundary element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1193-1217. doi : 10.1051/m2an/2015003. http://www.numdam.org/articles/10.1051/m2an/2015003/
M. Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis. Pure Appl. Math. Wiley-Interscience [John Wiley & Sons], New York (2000). | MR | Zbl
Efficiency and Optimality of Some Weighted–Residual Error Estimator for Adaptive 2D Boundary Element Methods. Comput. Methods Appl. Math. 13 (2013) 305–332. | DOI | MR | Zbl
, , , and ,M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer. Math. (2014). | MR
R.E. Bank, Hierarchical bases and the finite element method. In vol. 5 of Acta Numer. Cambridge Univ. Press, Cambridge (1996) 1–43. | MR | Zbl
A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. In vol. X, Symposia Mathematica (Convegno di Analisi Numerica, INDAM, Rome, 1972). Academic Press, London (1972) 295–313. | MR | Zbl
The -version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: M2AN 42 (2008) 821–849. | DOI | Numdam | MR | Zbl
and ,Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl
, and ,Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734–771. | DOI | MR | Zbl
and ,On traces for in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | DOI | MR | Zbl
, and ,Averaging techniques for the a posteriori BEM error control for a hypersingular integral equation in two dimensions. SIAM J. Sci. Comput. 29 (2007) 782–810. | DOI | MR | Zbl
and ,Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math. 97 (2004) 397–425. | DOI | MR | Zbl
, , and ,Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,A posteriori error analysis for a boundary element method with non-conforming domain decomposition. Numer. Methods Partial Differ. Eq. 30 (2014) 947–963. | DOI | MR | Zbl
and ,A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | DOI | MR | Zbl
,Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. | DOI | MR | Zbl
and ,Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl. Numer. Math. 59 (2009) 2713–2734. | DOI | MR | Zbl
, , and ,An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297–325. | DOI | MR | Zbl
and ,Simple a posteriori error estimators for the -version of the boundary element method. Computing 83 (2008) 135–162. | DOI | MR | Zbl
and ,Convergence of simple adaptive Galerkin schemes based on error estimators. Numer. Math. 116 (2010) 291–316. | DOI | MR | Zbl
, and ,The boundary element method with Lagrangian multipliers. Numer. Methods Partial Differ. Eq. 25 (2009) 1303–1319. | DOI | MR | Zbl
, and ,Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25 (2005) 379–407. | DOI | MR | Zbl
, and ,E. Hairer, S.P. Nørsett and G. Wanner, Solving ordinary differential equations. I, Nonstiff problems. In vol. 8 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1987). | MR | Zbl
On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. | DOI | MR | Zbl
,Crouzeix–Raviart boundary elements. Numer. Math. 112 (2009) 381–401. | DOI | MR | Zbl
and ,On 2D Newest Vertex Bisection: Optimality of Mesh–Closure and -Stability of -Projection. Constr. Approx. 38 (2013) 213–234. | DOI | MR | Zbl
, and ,W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). | MR | Zbl
Integral equations with nonintegrable kernels. Int. Eq. Oper. Theory 5 (1982) 562–572. | DOI | MR | Zbl
,Boundary integral equations for screen problems in . Int. Eq. Oper. Theory 10 (1987) 257–263. | MR | Zbl
,Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. | DOI | MR | Zbl
,H. Triebel, Interpolation theory, function spaces, differential operators, 2nd edn. Edited by Johann Ambrosius Barth, Heidelberg (1995). | MR | Zbl
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996). | Zbl
Cité par Sources :