Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1019-1046.

We consider an incompressible viscous flow without surface tension in a finite-depth domain of two dimensions, with free top boundary and fixed bottom boundary. This system is governed by the Navier–Stokes equations in this moving domain and the transport equation on the moving boundary. In this paper, we construct a stable numerical scheme to simulate the evolution of this system by discontinuous Galerkin method, and discuss the error analysis of the fluid under certain assumptions. Our formulation is mainly based on the geometric structure introduced in [Y. Guo and Ian Tice, Anal. PDE 6 (2013) 287–369; Y. Guo and Ian Tice, Arch. Ration. Mech. Anal. 207 (2013) 459–531; L. Wu, SIAM J. Math. Anal. 46 (2014) 2084–2135], and the natural energy estimate, which is rarely used in the numerical study of this system before.

Reçu le :
DOI : 10.1051/m2an/2014065
Classification : 35Q30, 35R35, 74S05
Mots-clés : Stability, free boundary, Navier–Stokes equation
Wu, Lei 1 ; Shu, Chi-Wang 1

1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
@article{M2AN_2015__49_4_1019_0,
     author = {Wu, Lei and Shu, Chi-Wang},
     title = {Numerical {Solution} of the {Viscous} {Surface} {Wave} with {Discontinuous} {Galerkin} {Method}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1019--1046},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {4},
     year = {2015},
     doi = {10.1051/m2an/2014065},
     mrnumber = {3371902},
     zbl = {1321.35143},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014065/}
}
TY  - JOUR
AU  - Wu, Lei
AU  - Shu, Chi-Wang
TI  - Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1019
EP  - 1046
VL  - 49
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014065/
DO  - 10.1051/m2an/2014065
LA  - en
ID  - M2AN_2015__49_4_1019_0
ER  - 
%0 Journal Article
%A Wu, Lei
%A Shu, Chi-Wang
%T Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1019-1046
%V 49
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014065/
%R 10.1051/m2an/2014065
%G en
%F M2AN_2015__49_4_1019_0
Wu, Lei; Shu, Chi-Wang. Numerical Solution of the Viscous Surface Wave with Discontinuous Galerkin Method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1019-1046. doi : 10.1051/m2an/2014065. http://www.numdam.org/articles/10.1051/m2an/2014065/

M.J. Ahn, H.Y. Lee and M.R. Ohm, Error estimates for fully discrete approximation to a free boundary problem in polymer technology. Appl. Math. Comput. 138 (2003) 227–238. | MR | Zbl

J. Thomas Beale, The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34 (1981) 359–392. | DOI | MR | Zbl

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173–261. | DOI | MR | Zbl

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl

R. Danchin, Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients. Rev. Mat. Iberoamericana 21 (2005) 863–888. | DOI | MR | Zbl

V. Girault, B. Riviere and M.F. Wheeler, A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM: M2AN 39 (2005) 1115–1147. | DOI | Numdam | MR | Zbl

V. Girault, B. Riviere and M.F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74 (2005) 249 53–84. | MR | Zbl

J. Grooss and J.S. Hesthaven, A level set discontinuous Galerkin method for free surface flows. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3406–3429. | DOI | MR | Zbl

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6 (2013) 287–369. | DOI | MR | Zbl

Y. Guo and I. Tice, Almost exponential decay of periodic viscous surface waves without surface tension. Arch. Ration. Mech. Anal. 207 (2013) 459–531. | DOI | MR | Zbl

E. Hairer, C. Lubich and M. Roche, The numerical solution of differential-algebraic systems by Runge-Kutta methods. In vol. 1409 of Lect. Notes Math. Springer-Verlag, Berlin (1989). | MR | Zbl

F.H. Harlow and J. Eddie Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182–2189. | DOI | MR | Zbl

C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981) 201–225. | DOI | Zbl

H.Y. Lee, Error analysis of finite element approximation of a Stefan problem with nonlinear free boundary condition. J. Appl. Math. Comput. 22 (2006) 223–235. | DOI | MR | Zbl

R.H. Nochetto and C. Verdi, An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comput. 51 (1988) 27–53. | DOI | MR | Zbl

M. Sussman and M.Y. Hussaini, A discontinuous spectral element method for the level set equation. J. Sci. Comput. 19 (2003) 479–500. | DOI | MR | Zbl

L.-H. Wang, On Korn’s inequality. J. Comput. Math. 21 (2003) 321–324. | MR | Zbl

M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. | DOI | MR | Zbl

L. Wu, Well-posedness and decay of the viscous surface wave. SIAM J. Math. Anal. 46 (2014) 2084–2135. | DOI | MR | Zbl

Cité par Sources :