Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 875-919.

The small-time existence of a strong solution to the free surface problem of primitive equations for the ocean with variable turbulent viscosity terms is shown in this paper. In this model, the turbulent viscosity coefficients, which include the Richardson number depending on unknown variables, are explicitly formulated. In addition, following the formulation of practical models, the kinematic condition is assumed on the free ocean surface. As in preceding works, we consider the problem in the three-dimensional strip-like region, and assume the f-approximation. Under some conditions on the initial and boundary data and the topography of the bottom of the ocean, we construct a strong local-in-time solution in Sobolev–Slobodetskiĭ spaces. The boundedness of the temperature and salinity is also shown in the present paper.

Reçu le :
DOI : 10.1051/m2an/2014061
Classification : 35M10, 35Q35, 35R35
Mots clés : Primitive equations, Sobolev–Slobodetskiĭ space, strong solution
Honda, Hirotada 1

1 Department of Mathematics, Keio University, 3-14-1 Hiyoshi, 223-8522 Yokohama, Japan
@article{M2AN_2015__49_3_875_0,
     author = {Honda, Hirotada},
     title = {Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {875--919},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014061},
     mrnumber = {3342232},
     zbl = {1317.35200},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014061/}
}
TY  - JOUR
AU  - Honda, Hirotada
TI  - Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 875
EP  - 919
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014061/
DO  - 10.1051/m2an/2014061
LA  - en
ID  - M2AN_2015__49_3_875_0
ER  - 
%0 Journal Article
%A Honda, Hirotada
%T Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 875-919
%V 49
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014061/
%R 10.1051/m2an/2014061
%G en
%F M2AN_2015__49_3_875_0
Honda, Hirotada. Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 875-919. doi : 10.1051/m2an/2014061. http://www.numdam.org/articles/10.1051/m2an/2014061/

P. Azerad and F. Guillén–González, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33 (2001) 847–859. | DOI | MR | Zbl

J.T. Beale, Large-time regularity of viscous surface waves. Arch. Rat. Mech. Anal. 84 (1984) 307–352. | DOI | MR | Zbl

F.J. Beron–Vera, J. Ochoa and P. Ripa, A note on boundary conditions for salt and freshwater balances. Ocean Modelling 1 (1999) 111–118. | DOI

V. Bjerknes, Das problem von der wettervorhersage, betrachtet vom standpunkt der mechanik und der physik. Meteor. Z. 21 (1904) 1–7. | JFM

O. Besson and M.R. Laydi, Some estimates for the anisotropic Navier–Stokes equations and for the hydrostatic approximation. RAIRO: M2AN-Mod. Math. Anal. Numér. 26 (1992) 855–865. | Numdam | MR | Zbl

R. Bleck and D.B. Boudra, Wind-driven spin-up eddy resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res. 91 (1986) 7611–7621. | DOI

A.F. Blumberg and G.L. Mellor, A description of a three-dimensional coastal ocean circulation model, in vol. 4 Three-Dimensional Coastal Ocean Models. Edited by N. Heaps. American Geophysical Union (1987) 1–16.

D. Bresch, A. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier–Stokes equations. SIAM. J. Math. Anal. 36 (2004) 796–814. | DOI | MR | Zbl

K. Bryan, A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 135 (1969) 154–169. | DOI | MR | Zbl

K. Bryan and M.D. Cox, An approximate equation of state for numerical models of ocean circulation. J. Phys. Oceanogr. 2 (1972) 510–514. | DOI

C. Cao and E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166 (2007) 245–267. | DOI | MR | Zbl

M.D. Cox, A primitive equation, three-dimensional model of the ocean. GFDL Ocean Group Technical Report 1 (1984).

W.P. Crowley, A global numerical ocean model. J. Comput. Phys. 3 (1968) 111–147. | DOI | Zbl

W.P. Crowley, A numerical model for viscous, free-surface, barotropic wind driven ocean circulations. J. Comput. Phys. 5 (1970) 139–168. | DOI | Zbl

J.K. Dukowicz and R.D. Smith, Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Research 99 (1994) 7991–8014. | DOI

S.M. Griffies et al., Developments in ocean climate modelling. Ocean Modelling 2 (2000) 123–192. | DOI

S.M. Griffies, R.C. Pacanowski, M. Schmidt and V. Balaji, Tracer concentration with an explicit free surface method for z-coordinate ocean models. Mon. Wea. Rev. 5 (2001) 1081–1098. | DOI

S.M. Griffies, Fundamentals of Ocean Climate Models. Princeton University Press, Princeton (2004). | MR | Zbl

F. Guillén–González and M.A. Rodríguez–Bellido, On the strong solutions of the primitive equations in 2D domains. Nonlinear Anal. 50 (2002) 621–646. | DOI | MR | Zbl

F. Guillén–González and M.A. Rodríguez–Bellido, A review on the improved regularity for the primitive equations, in Regularity and other aspects of the Navier–Stokes equations, edited by P. Mucha, P. Penel, M. Wiegner and W. Zajaczkowski. In vol. 70 of Banach Center (2005) 85–103. | MR | Zbl

F. Guillén–González, N. Masmoudi and M.A. Rodríguez–Bellido, Anisotropic estimates and strong solutions of the Primitive Equations. Differ. Int. Eq. 14 (2001) 1381–1408. | MR | Zbl

H. Hasumi, CCSR Ocean Component Model (COCO) Version 2.1, CCSR Report No. 13 (2000).

H. Honda, Small-time Existence of a Strong Solution of Primitive Equations for the Ocean and the Atmosphere. Ph.D. thesis, Keio University, Japan (2011).

H. Honda and A. Tani, Small-time existence of a strong solution of primitive equations of the coupled atmosphere and the ocean. Sūrikaisekikenkyūsho Kōkyūroku 1631 (2009) 12–33.

H. Honda and A. Tani, Small-time existence of a strong solution of primitive equations for the atmosphere. Adv. Math. Sci. Appl. 20 (2010) 547–583. | MR | Zbl

H. Honda and A. Tani, Small-time existence of a strong solution of primitive equations for the ocean. Tokyo J. Math. 35 (2012) 97–138. | DOI | MR | Zbl

C. Hu, Asymptotic analysis of the primitive equations under the small depth assumption. Nonlin. Anal. 61 (2005) 425–460. | DOI | MR | Zbl

C. Hu, R. Temam and M. Ziane, The primitive equations on the large scale ocean under small depth hypothesis. Discrete Contin. Dyn. Syst. 9 (2003) 97–131. | DOI | MR | Zbl

J.H. Jones, Vertical mixing in the Equatorial Undercurrent. J. Phys. Oceanogr. 3 (1973) 286–296. | DOI

P.D. Killworth, D. Stainforth, D.J. Webb and S.M. Peterson, The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model. J. Phys. Oceanogr. 21 (1991) 1333–1348. | DOI

E.B. Kraus and J.S. Turner, A one-dimensional model of the seasonal thermocline. Tellus 19 (1967) 98–106. | DOI

O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type. In vol. 23 of Transl. Math. Monogr. American Mathematical Society (1968). | MR | Zbl

J.L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlin. 5 (1992) 237–288. | DOI | MR | Zbl

J.L. Lions, R. Temam and S. Wang, On the equations of the large-scale-ocean. Nonlin. 5 (1992) 1007–1053. | DOI | MR | Zbl

J.L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean. Comput. Mech. Adv. 1 (1993) 5–54. | Zbl

J.L. Lions, R. Temam and S. Wang, Numerical analysis of the coupled atmosphere and ocean models. Comput. Mech. Adv. 1 (1993) 55–120. | Zbl

J.L. Lions, R. Temam and S. Wang, Problemes a frontiere libre pour les modeles couples de l’Ocean et de l’Atmosphere. C. R. Acad. Sci. Paris 318 (1994) 1165–1171. | MR | Zbl

J.L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models. J. Math. Pures Appl. 74 (1995) 105–163. | MR | Zbl

J.L. Lions, R. Temam and S. Wang, On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case. Nonlinear Anal. 40 (2000) 439–482. | DOI | MR | Zbl

https://www.pik-potsdam.de/research/earth-system-analysis/models/climber/climber3/ocean.html

http://www.gfdl.noaa.gov/ocean-model

R.C. Pacanowski and S.H. Philander, Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11 (1981) 1443–1451. | DOI

L.F. Richardson, Weather Prediction by Numerical Process. Cambridge University Press (1922). | JFM

A.J. Semtner, A general circulation model for the world ocean. UCLA Dept. Meteorol. Tech. Report 8 (1974) 99–120.

V.A. Solonnikov, Solvability of a problem of evolution of a viscous incompressible fluid bounded by a free surface in a finite time interval. St. Peters. Math. J. 3 (1992) 189–220. | MR | Zbl

V.A. Solonnikov and A. Tani, Free boundary problem for a compressible flow with a surface tension, in Constantin Carathéodory: International Tribute, edited by Th. M. Rassias. World Scientific Publ. Co. (1991) 1270–1309. | MR | Zbl

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection. Japan J. Math. 21 (1995) 1–42. | DOI | MR | Zbl

V.A. Solonnikov, On Boundary Value Problems to the Linear Parabolic Systems of Differential Equations of General Form (Russian), in Trudy. Mat. Inst. Steklov. 83 (1965) 3–163. English Transl. Proc. Steklov. Math. Inst. 83 (1965) 1–184. | MR | Zbl

N. Tanaka and A. Tani, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rat. Mech. Anal. 130 (1995) 303–314. | DOI | MR | Zbl

N. Tanaka and A. Tani, Surface waves for a compressible viscous fluid. J. Math. Fluid Mech. 5 (2003) 303–363. | DOI | MR | Zbl

R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handb. Math. Fluid Dyn., vol. III. Edited by S.J. Friedlander, D. Serre. North-Holland (2004) 535–657. | MR | Zbl

UNESCO, 1981: Tenth report of the Joint Panel on Oceanographic Tables and Standards. Unesco Technical papers in marine science, No. 36, 25 pp. Sidney, B.C. (1980).

W.M. Washington and C.L. Parkinson, An Introduction to Three-Dimensional Climate Modeling. Oxford University Press (1986). | Zbl

J. Wloka, Partielle Differentialgleichungen. B.G. Teubner (1982). | MR | Zbl

M. Ziane, Regularity results for Stokes type systems. Appl. Anal. 58 (1995) 263–292. | DOI | MR | Zbl

M. Ziane, Regularity results for the stationary primitive equations of atmosphere and the ocean. Nonlinear Anal. 28 (1997) 289–313. | DOI | MR | Zbl

Cité par Sources :