We consider the spectral discretization of the Navier–Stokes equations coupled with the heat equation where the viscosity depends on the temperature, with boundary conditions which involve the velocity and the temperature. This problem admits a variational formulation with three independent unknowns, the velocity, the pressure and the temperature. We prove optimal error estimates and present some numerical experiments which confirm the validity of the discretization.
DOI : 10.1051/m2an/2014049
Mots-clés : Navier–Stokes equations, heat equation, spectral methods
@article{M2AN_2015__49_3_621_0, author = {Agroum, Rahma and Aouadi, Saloua Mani and Bernardi, Christine and Satouri, Jamil}, title = {Spectral discretization of the {Navier{\textendash}Stokes} equations coupled with the heat equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {621--639}, publisher = {EDP-Sciences}, volume = {49}, number = {3}, year = {2015}, doi = {10.1051/m2an/2014049}, zbl = {1325.35134}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014049/} }
TY - JOUR AU - Agroum, Rahma AU - Aouadi, Saloua Mani AU - Bernardi, Christine AU - Satouri, Jamil TI - Spectral discretization of the Navier–Stokes equations coupled with the heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 621 EP - 639 VL - 49 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014049/ DO - 10.1051/m2an/2014049 LA - en ID - M2AN_2015__49_3_621_0 ER -
%0 Journal Article %A Agroum, Rahma %A Aouadi, Saloua Mani %A Bernardi, Christine %A Satouri, Jamil %T Spectral discretization of the Navier–Stokes equations coupled with the heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 621-639 %V 49 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014049/ %R 10.1051/m2an/2014049 %G en %F M2AN_2015__49_3_621_0
Agroum, Rahma; Aouadi, Saloua Mani; Bernardi, Christine; Satouri, Jamil. Spectral discretization of the Navier–Stokes equations coupled with the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 621-639. doi : 10.1051/m2an/2014049. http://www.numdam.org/articles/10.1051/m2an/2014049/
C. Bernardi and Y. Maday, Spectral Methods, in the Handb. Numer. Anal. V. Edited by P.G. Ciarlet and J.-L. Lions. North-Holland (1997) 209–485.
C. Bernardi, Y, Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques. In vol. 45 of Collection Math. Appl. Springer-Verlag (2004). | Zbl
C. Bernardi, F. Coquel and P.-A. Raviart, Automatic coupling and finite element discretization of the Navier–Stokes and heat equations, Internal Report 10001, Laboratoire Jacques-Louis Lions (2010).
Finite dimensionnal approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. | DOI | Zbl
, and ,A self-adaptive formulation for the Euler/Navier–Stokes coupling. Comput. Methods Appl. Mech. Engrg. 73 (1989) 317–330. | DOI | Zbl
, and ,A Navier–Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlin. Anal. Real World Appl. 10 (2009) 992–1015. | DOI | Zbl
, and ,Problèmes de Neumann et de Dirichlet sur un polyèdre dans : régularité dans les espaces de Sobolev . C.R. Acad. Sci. Paris Sér. I 307 (1988) 27–32. | Zbl
,Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper. Theory 15 (1992) 227–261. | DOI | Zbl
,V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Ser. Comput. Math. Springer-Verlag, Berlin (1986). | Zbl
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). | Zbl
Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91–115. | DOI | Zbl
and ,An -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189–206. | Numdam | Zbl
,Some results of Bernstein and Jackson type for polynomial approximation in -spaces. Japan J. Appl. Math. 1 (1984) 173–181. | DOI | Zbl
,Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. Ser. IV 110 (1976) 353–372. | DOI | Zbl
,Cité par Sources :