We derive upper bounds on the difference between the orthogonal projections of a smooth function
DOI : 10.1051/m2an/2014045
Mots-clés : Superconvergence, orthogonal projection, elliptic projection, L2-projection
@article{M2AN_2015__49_2_559_0, author = {Gawlik, Evan S. and Lew, Adrian J.}, title = {Supercloseness of orthogonal projections onto nearby finite element spaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {559--576}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014045}, mrnumber = {3342218}, zbl = {1316.65101}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2014045/} }
TY - JOUR AU - Gawlik, Evan S. AU - Lew, Adrian J. TI - Supercloseness of orthogonal projections onto nearby finite element spaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 559 EP - 576 VL - 49 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2014045/ DO - 10.1051/m2an/2014045 LA - en ID - M2AN_2015__49_2_559_0 ER -
%0 Journal Article %A Gawlik, Evan S. %A Lew, Adrian J. %T Supercloseness of orthogonal projections onto nearby finite element spaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 559-576 %V 49 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2014045/ %R 10.1051/m2an/2014045 %G en %F M2AN_2015__49_2_559_0
Gawlik, Evan S.; Lew, Adrian J. Supercloseness of orthogonal projections onto nearby finite element spaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 559-576. doi : 10.1051/m2an/2014045. https://www.numdam.org/articles/10.1051/m2an/2014045/
A.B. Andreev, Supercloseness between the elliptic projection and the approximate eigenfunction and its application to a postprocessing of finite element eigenvalue problems. In Numer. Anal. Appl. Springer (2005) 100–107. | Zbl
The post-processing approach in the finite element method, Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20 (1984) 1085–1109. | DOI | Zbl
and ,Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations. Numer. Methods Partial Differ. Equ. 12 (1996) 347–392. | DOI | MR | Zbl
, , and ,Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41 (2003) 2294–2312. | DOI | MR | Zbl
and ,Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10 (1976) 243–251. | DOI | Zbl
,Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489–505. | DOI | MR | Zbl
and ,Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72 (2003) 577–606. | DOI | MR | Zbl
, , and ,
Stability in
A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Springer, New York (2004). | MR | Zbl
E.S. Gawlik and A.J. Lew, Unified analysis of finite element methods for problems with moving boundaries (2014). | MR
Pointwise superconvergence of the gradient for the linear tetrahedral element. Numer. Methods Partial Differ. Equ. 10 (1994) 651–666. | DOI | MR | Zbl
,A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations. Int. J. Numer. Methods Eng. 27 (1989) 469–481. | DOI | MR | Zbl
and ,Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77 (2008) 1253–1268. | DOI | MR | Zbl
and ,Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984) 105–116. | DOI | MR | Zbl
and ,On superconvergence techniques. Acta Appl. Math. 9 (1987) 175–198. | DOI | MR | Zbl
and ,Lagrange interpolation and finite element superconvergence. Numer. Methods Partial Differ. Equ. 20 (2004) 33–59. | DOI | MR | Zbl
,Superconvergence of tetrahedral quadratic finite elements for a variable coefficient elliptic equation. Numer. Methods Partial Differ. Equ. 29 (2012) 1043–1055. | DOI | MR | Zbl
, and ,Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. USSR Comput. Math. Math. Phys. 9 (1969) 158–183. | DOI | Zbl
and ,Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33 (1996) 505–521. | DOI | MR | Zbl
, and ,L.B. Wahlbin, Superconvergence in Galerkin finite element methods. Springer, Berlin (1995). | MR | Zbl
The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992) 1331–1364. | DOI | MR | Zbl
and ,Cité par Sources :