Fast and accurate finite element approximation of wave maps into spheres
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 551-558.

A constraint preserving numerical method for the approximation of wave maps into spheres is presented. The scheme has a second order consistency property and is energy preserving and reversible. Its unconditional convergence to an exact solution is proved. A fixed point iteration allows for a solution of the nonlinear system of equations in each time step under a moderate step size restriction.

Reçu le :
DOI : 10.1051/m2an/2014044
Classification : 65N12, 58J45, 35L70, 35Q75
Mots clés : Geometric evolution problem, wave maps, nonlinear partial differential equation, discretization
Bartels, Sören 1

1 Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Str. 10, 79104 Freiburg I.Br., Germany
@article{M2AN_2015__49_2_551_0,
     author = {Bartels, S\"oren},
     title = {Fast and accurate finite element approximation of wave maps into spheres},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {551--558},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014044},
     mrnumber = {3342217},
     zbl = {1316.65085},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014044/}
}
TY  - JOUR
AU  - Bartels, Sören
TI  - Fast and accurate finite element approximation of wave maps into spheres
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 551
EP  - 558
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014044/
DO  - 10.1051/m2an/2014044
LA  - en
ID  - M2AN_2015__49_2_551_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%T Fast and accurate finite element approximation of wave maps into spheres
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 551-558
%V 49
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014044/
%R 10.1051/m2an/2014044
%G en
%F M2AN_2015__49_2_551_0
Bartels, Sören. Fast and accurate finite element approximation of wave maps into spheres. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 551-558. doi : 10.1051/m2an/2014044. http://www.numdam.org/articles/10.1051/m2an/2014044/

F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. | DOI | MR | Zbl

L. Baňas, A. Prohl and R. Schätzle, Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numer. Math. 115 (2010) 395–432. | DOI | MR | Zbl

J.W. Barrett, S. Bartels, X. Feng and A. Prohl, A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45 (2007) 905–927. | DOI | MR | Zbl

S. Bartels, Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47 (2009) 3486–3506. | DOI | MR | Zbl

S. Bartels, Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79 (2010) 1263–1301. | DOI | MR | Zbl

S. Bartels, Projection-free approximation of geometrically constrained partial differential equations. Preprint (2013). | MR

S. Bartels, X. Feng and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2008) 61–87. | DOI | MR | Zbl

S. Bartels, C. Lubich and A. Prohl, Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comput. 78 (2009) 1269–1292. | DOI | MR | Zbl

A. Freire, S. Müller and M. Struwe, Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15 (1998) 725–754. | DOI | Numdam | MR | Zbl

T. Karper and F. Weber, A new angular momentum method for computing wave maps into spheres. Technical Report. Preprint ArXiv:1312.3257 (2013). | MR | Zbl

J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008) 543–615. | DOI | MR | Zbl

S. Müller and M. Struwe, Spatially discrete wave maps on (1+2)-dimensional space-time. Topol. Methods Nonlinear Anal. 11 (1998) 295–320. | DOI | MR | Zbl

J. Shatah and M. Struwe, Geometric wave equations. In vol. 2 Courant Lect. Notes Math. New York University Courant Institute of Mathematical Sciences, New York (1998). | MR | Zbl

D. Tataru, The wave maps equation. Bull. Amer. Math. Soc. 41 (2004) 185–204 (electronic). | DOI | MR | Zbl

Cité par Sources :