We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier–Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier–Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.
DOI : 10.1051/m2an/2014039
Mots-clés : Incompressible two-phase flow, insoluble surfactants, finite elements, front tracking, ALE ESFEM
@article{M2AN_2015__49_2_421_0, author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert}, title = {On the stable numerical approximation of two-phase flow with insoluble surfactant}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {421--458}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014039}, zbl = {1315.35156}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014039/} }
TY - JOUR AU - Barrett, John W. AU - Garcke, Harald AU - Nürnberg, Robert TI - On the stable numerical approximation of two-phase flow with insoluble surfactant JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 421 EP - 458 VL - 49 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014039/ DO - 10.1051/m2an/2014039 LA - en ID - M2AN_2015__49_2_421_0 ER -
%0 Journal Article %A Barrett, John W. %A Garcke, Harald %A Nürnberg, Robert %T On the stable numerical approximation of two-phase flow with insoluble surfactant %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 421-458 %V 49 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014039/ %R 10.1051/m2an/2014039 %G en %F M2AN_2015__49_2_421_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. On the stable numerical approximation of two-phase flow with insoluble surfactant. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 421-458. doi : 10.1051/m2an/2014039. http://www.numdam.org/articles/10.1051/m2an/2014039/
3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. FDMP Fluid Dyn. Mater. Process. 5 (2009) 345–372.
and ,Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. | DOI | Zbl
,J.W. Barrett, H. Garcke and R. Nürnberg, A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comput. To appear in DOI: 10.1007/s10915-014-9885-2.
Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. | DOI | Zbl
and ,Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427–1464. | DOI | Zbl
, and ,A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–462. | DOI | Zbl
, and ,On the parametric finite element approximation of evolving hypersurfaces in . J. Comput. Phys. 227 (2008) 4281–4307. | DOI | Zbl
, and ,On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229 (2010) 6270–6299. | DOI | Zbl
, and ,Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Engrg. 267 (2013) 511–530. | DOI | MR | Zbl
, and ,Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs–Thomson law. Adv. Differ. Eq. 18 (2013) 383–432. | Zbl
, and ,A subspace projection method for the implementation of interface conditions in a single-drop flow problem. J. Comput. Phys. 252 (2013) 438–457. | DOI | Zbl
and ,D. Bothe, M. Köhne and J. Prüss, On two-phase flows with soluble surfactant. Preprint (2012). Available at . | arXiv
Stability of equilibria for two-phase flows with soluble surfactant. Quart. J. Mech. Appl. Math. 63 (2010) 177–199. | DOI | Zbl
and ,D. Bothe, J. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant. In Nonlinear elliptic and parabolic problems. In vol. 64 of Progr. Nonlinear Differ. Eq. Appl. (2005) 37–61. | Zbl
R. Clift, J.R. Grace and M.E. Weber, Bubbles, drops, and particles. Dover Publishing, Mineola, N.Y. (2005).
Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | DOI | Zbl
, and ,The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids 16 (2004) 14–21. | DOI | Zbl
and ,An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–611. | DOI | Zbl
,Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007) 262–292. | DOI | Zbl
and ,Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | DOI | Zbl
and ,Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31 (2011) 786–812. | DOI | Zbl
, , and ,An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80 (2012) 469–501. | DOI | Zbl
and ,On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Comput. Phys. 14 (2013) 879–915. | DOI | Zbl
, , and ,A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228 (2009) 2859–2873. | DOI | Zbl
and ,Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12 (2014) 1475–1522. | DOI | Zbl
, and ,Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025–2048. | DOI | Zbl
and ,V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, Berlin (1986).
S. Groß and A. Reusken, Numerical methods for two-phase incompressible flows. Vol. 40 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2011). | Zbl
Quantitative benchmark computations of two-dimensional bubble dynamics. Internat. J. Numer. Methods Fluids 60 (2009) 1259–1288. | DOI | Zbl
, , , , , and ,A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201 (2004) 685–722. | DOI | Zbl
and ,A numerical method for two phase flows with insoluble surfactants. Comput. Fluids 49 (2011) 150–165. | DOI | Zbl
and ,An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227 (2008) 7279–7293. | DOI | Zbl
, and ,A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (2008) 2238–2262. | DOI | Zbl
and ,A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Eng. Math. 49 (2004) 163–180. | DOI | Zbl
,A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio. Eur. J. Mech. B Fluids 21 (2002) 49–59. | DOI | Zbl
, and ,A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). | Zbl
A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7 (2009) 1009–1037. | DOI | Zbl
, , , and ,Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22 (2010) 112104. | DOI
and ,A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant. Commun. Comput. Phys. 15 (2014) 451–469. | DOI | Zbl
, , and ,A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212 (2006) 590–616. | DOI | Zbl
, , and ,A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231 (2012) 5897–5909. | DOI
, and ,An arbitrary Lagrangian–Eulerian (ALE) method for interfacial flows with insoluble surfactants. FDMP Fluid Dyn. Mater. Process. 3 (2007) 65–95. | Zbl
and ,Cité par Sources :