We design two parallel schemes, based on Schwarz Waveform Relaxation (SWR) procedures, for the numerical solution of the Kolmogorov equation. The latter is a simplified version of the Fokker–Planck equation describing the time evolution of the probability density of the velocity of a particle. SWR procedures decompose the spatio-temporal computational domain into subdomains and solve (in parallel) subproblems, that are coupled through suitable conditions at the interfaces to recover the solution of the global problem. We consider coupling conditions of both Dirichlet (Classical SWR) and Robin (Optimized SWR) types. We prove well-posedeness of the schemes subproblems and convergence for the proposed algorithms. We corroborate our findings with some numerical tests.
DOI : 10.1051/m2an/2014038
Mots clés : Domain decomposition, Schwarz waveform relaxation methods, optimized Schwarz, Kolmogorov equation, Fokker–Plank equation, kinetic equations
@article{M2AN_2015__49_2_395_0, author = {Gerardo-Giorda, Luca and Tran, Minh-Binh}, title = {Parallelizing the {Kolmogorov} {Fokker} {Planck} {Equation}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {395--420}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014038}, zbl = {1336.35333}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014038/} }
TY - JOUR AU - Gerardo-Giorda, Luca AU - Tran, Minh-Binh TI - Parallelizing the Kolmogorov Fokker Planck Equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 395 EP - 420 VL - 49 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014038/ DO - 10.1051/m2an/2014038 LA - en ID - M2AN_2015__49_2_395_0 ER -
%0 Journal Article %A Gerardo-Giorda, Luca %A Tran, Minh-Binh %T Parallelizing the Kolmogorov Fokker Planck Equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 395-420 %V 49 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014038/ %R 10.1051/m2an/2014038 %G en %F M2AN_2015__49_2_395_0
Gerardo-Giorda, Luca; Tran, Minh-Binh. Parallelizing the Kolmogorov Fokker Planck Equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 395-420. doi : 10.1051/m2an/2014038. http://www.numdam.org/articles/10.1051/m2an/2014038/
Convergence of a -streamline diffusion scheme for Vlasov-Fokker-Planck system. Math. Models Methods Appl. Sci. 17 (2007) 1159–1182. | DOI | Zbl
and ,Some controllability results for the 2D Kolmogorov equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 1793–1815. | DOI | Numdam | Zbl
and ,Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation. J. Comput. Phys. 133 (1997) 310–322. | DOI | Zbl
, , and ,Numerical solution of an ionic Fokker-Planck equation with electronic temperature. SIAM J. Numer. Anal. 39 (2001) 1219–1253. (electronic) | DOI | Zbl
, and ,A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics. J. Comput. Phys. 230 (2011) 1084–1099. | DOI | Zbl
, and ,Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in . Publ. Mat. 52 (2008) 413–433. | DOI | Zbl
, and ,N. Crouseilles and F. Filbet, A conservative and entropic method for the Vlasov-Fokker-Planck-Landau equation. In vol. 7 of Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. Eur. Math. Soc. Zürich (2005) 59–70. | Zbl
Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201 (2004) 546–572. | DOI | Zbl
and ,An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math. 68 (1994) 239–262. | DOI | Zbl
and ,Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008/2009) 204–226. | DOI | Zbl
,On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Commun. Pure Appl. Math. 54 (2001) 1–42. | DOI | Zbl
and ,Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 (2009) 511–516. | DOI | Zbl
, and ,High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications. J. Comput. Phys. 228 (2009) 5072–5100. | DOI | Zbl
, , and ,Numerical solution of the Fokker-Planck-Landau equation by spectral methods. Commun. Math. Sci. 1 (2003) 206–207. | DOI | Zbl
and ,An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation. Commun. Math. Sci. 7 (2009) 635–664. | DOI | Zbl
, and ,Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19 (1998) 2014–2031. | DOI | Zbl
and ,Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. (electronic) | DOI | Zbl
and ,Méthodes de décomposition de domaines pour l’équation des ondes en dimension 1. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 589–592. | DOI | Zbl
and ,Un algorithme discret de décomposition de domaines pour l’équation des ondes en dimension 1. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 699–702. | DOI | Zbl
and ,M.J. Gander, L. Halpern and F. Nataf, Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In Eleventh International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg (1999) 27–36. (electronic)
M.J. Gander, L. Halpern and F. Nataf, Optimized Schwarz methods. In Domain decomposition methods in sciences and engineering (Chiba, 1999) DDM.org, Augsburg (2001) 15–27. (electronic)
An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Internat. J. Numer. Methods Fluids 55 (2007) 163–175. | DOI | Zbl
, and ,L. Halpern, Optimized Schwarz waveform relaxation: roots, blossoms and fruits. In vol. 70 of Domain decomposition methods in science and engineering XVIII. Lect. Notes Comput. Sci. Eng. Springer, Berlin (2009) 225–232. | Zbl
Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. | DOI | Zbl
,Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift. ESAIM: M2AN 43 (2009) 445–485. | DOI | Zbl
and ,O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uraceva, Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1967) | Zbl
Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions. Numer. Methods Partial Differ. Eq. 25 (2009) 418–429. | DOI | Zbl
and ,Implicit schemes for the Fokker-Planck-Landau equation. SIAM J. Sci. Comput. 27 (2005) 809–830. (electronic) | DOI | Zbl
and ,G.I. Marchuk, Splitting and alternating direction methods. In Vol. I of Handbook of numerical analysis, Handb. Numer. Anal. North-Holland, Amsterdam (1990) 197–462. | Zbl
D. Milić, Explicit method for the numerical solution of the Fokker-Planck equation of filtered phase noise. Approximation and computation. Vol. 42 of Springer Optim. Appl. Springer, New York (2011) 401–407. | Zbl
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). | Zbl
Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension. SIAM J. Numer. Anal. 35 (1998) 1149–1175. | DOI | Zbl
,Parallel Schwarz waveform relaxation method for a semilinear heat equation in a cylindrical domain. C. R. Math. Acad. Sci. Paris 348 (2010) 795–799. | DOI | Zbl
,A parallel four step domain decomposition scheme for coupled forward-backward stochastic differential equations. J. Math. Pures Appl. 96 (2011) 377–394. | DOI | Zbl
,M.-B. Tran, Optimized overlapping domain decomposition: Convergence proofs. In vol. 91 of Domain Decomposition Methods in Science and Engineering XXI. Lect. Notes Comput. Sci. Eng. Springer-Verlag (2013) 493–500.
Overlapping optimized Schwarz methods for parabolic equations in dimensions. Proc. Amer. Math. Soc. 141 (2013) 1627–1640. | DOI | Zbl
,Parallel schwarz waveform relaxation algorithm for an n-dimensional semilinear heat equation. ESAIM: M2AN 48 (2014) 795–813. | DOI | Zbl
,C. Villani, Hypocoercive diffusion operators. In vol. III of International Congress of Mathematicians. Eur. Math. Soc., Zürich (2006) 473–498. | Zbl
D.V. Widder, The Laplace Transform. Vol. 6 of Princeton Mathematical Series. Princeton University Press, Princeton, N. J. (1941) | Zbl
Cité par Sources :