Discretized fractional substantial calculus
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 373-394.

This paper discusses the properties and the numerical discretizations of the fractional substantial integral

I s ν f(x)=1 Γ(ν) a x x-τ ν-1 e -σ(x-τ) f(τ)dτ,ν>0,
and the fractional substantial derivative
D s μ f(x)=D s m [I s ν f(x)],ν=m-μ,
where D s = x+σ=D+σ, σ can be a constant or a function not related to x, say σ(y); and m is the smallest integer that exceeds μ. The Fourier transform method and fractional linear multistep method are used to analyze the properties or derive the discretized schemes. And the convergences of the presented discretized schemes with the global truncation error 𝒪(h p )(p=1,2,3,4,5) are theoretically proved and numerically verified.

Reçu le :
DOI : 10.1051/m2an/2014037
Classification : 26A33, 65L06, 42A38, 65M12
Mots clés : Fractional substantial calculus, fractional linear multistep methods, fourier transform, stability and convergence
Chen, Minghua 1 ; Deng, Weihua 1

1 School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P.R. China
@article{M2AN_2015__49_2_373_0,
     author = {Chen, Minghua and Deng, Weihua},
     title = {Discretized fractional substantial calculus},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {373--394},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014037},
     zbl = {1314.26007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014037/}
}
TY  - JOUR
AU  - Chen, Minghua
AU  - Deng, Weihua
TI  - Discretized fractional substantial calculus
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 373
EP  - 394
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014037/
DO  - 10.1051/m2an/2014037
LA  - en
ID  - M2AN_2015__49_2_373_0
ER  - 
%0 Journal Article
%A Chen, Minghua
%A Deng, Weihua
%T Discretized fractional substantial calculus
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 373-394
%V 49
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014037/
%R 10.1051/m2an/2014037
%G en
%F M2AN_2015__49_2_373_0
Chen, Minghua; Deng, Weihua. Discretized fractional substantial calculus. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 373-394. doi : 10.1051/m2an/2014037. http://www.numdam.org/articles/10.1051/m2an/2014037/

E. Barkai and R.J. Silbey, Fractional Kramers equation. J. Phys. Chem. B 104 (2000) 3866–3874. | DOI

S. Carmi and E. Barkai, Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84 (2011) 061104. | DOI

S. Carmi, L. Turgeman and E. Barkai, On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141 (2010) 1071-1092. | DOI | Zbl

M.H. Chen and W.H. Deng, Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16 (2014) 516–540. | DOI | Zbl

M.H. Chen and W.H. Deng, Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52 (2014) 1418-1438. | DOI | Zbl

W.H. Deng, M.H. Chen and E. Barkai, Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. (2014). DOI: 10.1007/s10915-014-9873-6.

G.M. Fikhtengoltz, Course of Differential and Integral Calculus, vol. 2. Nauka, Moscow (1969).

R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96 (2006) 230601. | DOI

R. Gorenflo and F. Mainardi, Fractional calculus: intergtal and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi. Springer Verlag, Wien and New York (1997). | Zbl

P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. John Wiley, New York (1962). | Zbl

Ch. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. | DOI | Zbl

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | Zbl

R. Metzler and T.F. Nonnenmacher, Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E 57 (1998) 6409. | DOI

R. Metzler and I.M. Sokolov, Superdiffusive Klein–Kramers equation: Normal and anomalous time evolution and Lévy walk moments. Europhys. Lett. 58 (2002) 482–488. | DOI

K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication, USA (1993). | Zbl

K.B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974). | Zbl

I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). | Zbl

I.M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative. Phys. Rev. E 67 (2003) 010101(R). | DOI

W.Y. Tian, H. Zhou and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations. To appear in Math. Comput. (2015). Doi:10.1090/S0025-5718-2015-02917-2.

L. Turgeman, S. Carmi and E. Barkai, Fractional Feynman-Kac Equation for Non-Brownian Functionals. Phys. Rev. Lett. 103 (2009) 190201. | DOI

Cité par Sources :