Convergence of the cell average technique for Smoluchowski coagulation equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 349-372.

We present the convergence analysis of the cell average technique, introduced in [J. Kumar et al., Powder Technol. 179 (2007) 205–228.], to solve the nonlinear continuous Smoluchowski coagulation equation. It is shown that the technique is second order accurate on uniform grids and first order accurate on non-uniform smooth (geometric) grids. As an essential ingredient, the consistency of the technique is thoroughly discussed.

Reçu le :
DOI : 10.1051/m2an/2014035
Classification : 45J05, 45K05, 45L05, 65R20
Mots clés : Particles, coagulation, cell average technique, consistency, Lipschitz condition, convergence
Giri, Ankik Kumar 1, 2 ; Nagar, Atulya K. 3

1 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
2 Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, 4040 Linz, Austria.
3 Department of Mathematics and computer science, Liverpool Hope University, Hope Park, Liverpool, UK.
@article{M2AN_2015__49_2_349_0,
     author = {Giri, Ankik Kumar and Nagar, Atulya K.},
     title = {Convergence of the cell average technique for {Smoluchowski} coagulation equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {349--372},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014035},
     zbl = {1315.65109},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014035/}
}
TY  - JOUR
AU  - Giri, Ankik Kumar
AU  - Nagar, Atulya K.
TI  - Convergence of the cell average technique for Smoluchowski coagulation equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 349
EP  - 372
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014035/
DO  - 10.1051/m2an/2014035
LA  - en
ID  - M2AN_2015__49_2_349_0
ER  - 
%0 Journal Article
%A Giri, Ankik Kumar
%A Nagar, Atulya K.
%T Convergence of the cell average technique for Smoluchowski coagulation equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 349-372
%V 49
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014035/
%R 10.1051/m2an/2014035
%G en
%F M2AN_2015__49_2_349_0
Giri, Ankik Kumar; Nagar, Atulya K. Convergence of the cell average technique for Smoluchowski coagulation equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 349-372. doi : 10.1051/m2an/2014035. http://www.numdam.org/articles/10.1051/m2an/2014035/

J.P. Bourgade and F. Filbert, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. | DOI | Zbl

P.B. Dubovskiǐ, Mathematical Theory of Coagulation. In vol. 23 of Lecture notes. Global Analysis Research Center, Seoul National university (1994). | Zbl

P.B. Dubovskiǐ, V.A. Galkin and I.W. Stewart, Exact solutions for the coagulation-fragmentation equations. J. Phys. A: Math. Gen. 25 (1992) 4737–4744. | DOI | Zbl

P.B. Dubovskiǐ and I.W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Meth. Appl. Sci. 19 (1996) 571–591. | DOI | Zbl

A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena. SIAM J. Sci. Comput. 22 (2000) 802–821. | DOI | Zbl

A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchowski’s coagulation equation. Ann. Appl. Probab. 11 (2001) 1137–1165. | DOI | Zbl

M. Escobedo, P. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models. J. Differ. Equ. 195 (2003) 143–174. | DOI | Zbl

R.C. Everson, D. Eyre and Q.P. Campbell, Spline method for solving continuous batch grinding and similarity equations. Comput. Chem. Eng. 21 (1997) 1433–1440. | DOI

F. Filbet and P. Laurençot, Mass-conserving solutions and non-conservative approximation to the smoluchowski coagulation equation. Arch. Math. 83 (2004) 558–567. | DOI | Zbl

F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25 (2004) 2004–2028. | DOI | Zbl

N. Fournier and P. Laurençot, Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256 (2005) 589–609. | DOI | Zbl

N. Fournier and P. Laurençot, Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal. 233 (2006) 351–379. | DOI | Zbl

A.K. Giri, Mathematical and numerical analysis for coagulation-fragmentation equations. Ph.D. Thesis. Otto-von-Guericke-University Magdeburg, Germany, 2010.

A.K. Giri and E. Hausenblas, Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique. Nonlinear Anal. Real World Appl. 14 (2013) 2068–2090. | DOI | Zbl

A.K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl. 374 (2011) 71–87. | DOI | Zbl

A.K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlin. Anal. 75 (2012) 2199–2208. | DOI | Zbl

A.K. Giri and G. Warnecke, Uniqueness for the continuous coagulation-fragmentation equation with strong fragmentation. Z. Angew. Math. Phys. 62 (2011) 1047–1063. | DOI | Zbl

W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. Springer-Verlag New York, USA, 1st edition (2003). | Zbl

J. Kumar, M. Peglow, G. Warnecke and S. Heinrich, An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 179 (2007) 205–228.

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique. Chem. Eng. Sci. 61 (2006) 3327–3342. | DOI

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization-I. A fixed pivot technique. Chem. Eng. Sci. 51 (1996) 1311–1332. | DOI

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization II. A moving pivot technique. Chem. Eng. Sci. 51 (1996) 1333–1342. | DOI

J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations - I: The fixed pivot technique. Numer. Math. 111 (2008) 81–108. | DOI | Zbl

J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations - II: The cell average technique. Numer. Math. 110 (2008) 539–559. | DOI | Zbl

W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Meth. Appl. Sci. 27 (2004) 703–721. | DOI | Zbl

P. Laurençot, On a class of continuous coagulation- fragmentation equations. J. Differ. Equ. 167 (2000) 245–274 | DOI | Zbl

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinburgh 132A (2002) 1219–1248. | DOI | Zbl

M.H. Lee, On the validity of the coagulation equation and the nature of runaway growth. Icarus 143 (2000) 74–86. | DOI

P. Linz, Convergence of a discretization method for integro-differential equations. Numer. Math. 25 (1975) 103–107. | DOI | Zbl

D.J. Mclaughlin, W. Lamb and A.C. Mcbride, A semigroup approach to fragmentation models. SIAM J. Math. Anal. 28 (1997) 1158–1172. | DOI | Zbl

D.J. Mclaughlin, W. Lamb and A.C. Mcbride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28 (1997) 1173–1190. | DOI | Zbl

M. Nicmanis and M.J. Hounslow, Finite-element methods for steady-state population balance equations. AICHE J. 44 (1998) 2258–2272. | DOI

S. Rigopoulos and A.G. Jones, Finite-element scheme for solution of the dynamic population balance equation. AICHE J. 49 (2003) 1127–1139. | DOI

J. Su, Z. Gu, Y. Li, S. Feng and X.Y. Xu, Solution of population balance equation using quadrature method of moments with an adjustable factor. Chem. Eng. Sci. 62 (2007) 5897–5911. | DOI

I.W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels. Math. Meth. Appl. Sci. 11 (1989) 627–648. | DOI | Zbl

Cité par Sources :