Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 275-301.

We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.

Reçu le :
DOI : 10.1051/m2an/2014033
Classification : 65M12, 65M60, 76T99, 76D45
Mots-clés : Quasi-incompressibility, Allen–Cahn, Cahn–Hilliard, Navier–Stokes–Korteweg, phase transition, energy consistent/mimetic, discontinuous Galerkin finite element method
Giesselmann, Jan 1 ; Pryer, Tristan 2

1 University of Stuttgart, Institute for Applied Analysis and Numerical Simulation, Pfaffenwaldring 57, 70569 Stuttgart, Germany
2 Tristan Pryer, Department of Mathematics and Statistics, Whiteknights, PO Box 220, Reading RG6 6AX, UK
@article{M2AN_2015__49_1_275_0,
     author = {Giesselmann, Jan and Pryer, Tristan},
     title = {Energy consistent discontinuous {Galerkin} methods for a quasi-incompressible diffuse two phase flow model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {275--301},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014033},
     zbl = {1310.76092},
     mrnumber = {3342201},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014033/}
}
TY  - JOUR
AU  - Giesselmann, Jan
AU  - Pryer, Tristan
TI  - Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 275
EP  - 301
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014033/
DO  - 10.1051/m2an/2014033
LA  - en
ID  - M2AN_2015__49_1_275_0
ER  - 
%0 Journal Article
%A Giesselmann, Jan
%A Pryer, Tristan
%T Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 275-301
%V 49
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014033/
%R 10.1051/m2an/2014033
%G en
%F M2AN_2015__49_1_275_0
Giesselmann, Jan; Pryer, Tristan. Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 275-301. doi : 10.1051/m2an/2014033. http://www.numdam.org/articles/10.1051/m2an/2014033/

H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289 (2009) 45–73. | DOI | MR | Zbl

H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44 (2012) 316–340. | DOI | MR | Zbl

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013, 40. | DOI | MR | Zbl

G. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel and C. Kraus, A diffuse interface model for quasi-incompressible flows: Sharp interface limits and numerics. ESAIM: Proc. 38 (2012) 54–77. | DOI | MR | Zbl

G.L. Aki, W. Dreyer, J. Giesselmann and C. Kraus, A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci. 24 (2014) 827–861. | DOI | MR | Zbl

S. Aland, J. Lowengrub and A. Voigt, Two-phase flow in complex geometries: a diffuse domain approach. CMES Comput. Model. Eng. Sci. 57 (2010) 77–107. | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Engrg. 267 (2013) 511–530. | DOI | MR | Zbl

J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100 (1992) 335–354. | DOI | MR | Zbl

F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptotic Anal. 20 (1999) 175–212. | MR | Zbl

Ph.G. Ciarlet, The finite element method for elliptic problems. Stud. Math. Appl., Vol. 4. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl

H. Ding, P.D.M. Spelt and Chang Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007) 2078–2095. | DOI | Zbl

S. Dong and J. Shen, A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231 (2012) 5788–5804. | DOI | MR | Zbl

L.C. Evans, Partial differential equations, vol. 19 of Grad. Stud. Math. AMS, Providence, RI (1998). | MR | Zbl

J. Giesselmann, Ch. Makridakis and T. Pryer, Energy consistent dg methods for the navier-stokes-korteweg system, Math. Comput. 83 (2014) 2071–2099. | DOI | MR | Zbl

G. Grün, On Convergent Schemes for Diffuse Interface Models for Two-Phase Flow of Incompressible Fluids with General Mass Densities, SIAM J. Numer. Anal. 51 (2013) 3036–3061. | DOI | MR | Zbl

G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000) 113–152. | DOI | Zbl

G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257 (2014) A(0):708–725.

Z. Guo, Ping Lin and J.S. Lowengrub, A numerical method for the quasi-incompressible cahn-hilliard-navier-stokes equations for variable density flows with a discrete energy law (2014). | arXiv

M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996) 815–831. | DOI | Zbl

P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (1977) 435–479. | DOI

Chun Liu and Jie Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179 (2003) 211–228. | DOI | Zbl

A. Logg and G.N. Wells, DOLFIN: automated finite element computing. ACM Trans. Math. Software 37 (2010) 20, 28. | DOI | Zbl

J.S. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998) 2617–2654. | DOI | Zbl

N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi–stable potentials with a Dirichlet condition. Proc. R. Soc. Lond., Ser. A 429 (1990) 505–532. | DOI | Zbl

M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. | DOI | Zbl

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101 (1988) 209–260. | DOI | Zbl

R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow. In vol. 31 of Annual review of fluid mechanics. Annual Reviews, Palo Alto, CA (1999) 567–603.

J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32 (2010) 1159–1179. | DOI | Zbl

S. Vincent and J.-P. Caltagirone, A one-cell local multigrid method for solving unsteady incompressible multiphase flows. J. Comput. Phys. 163 (2000) 172–215. | DOI | Zbl

Zh. Zhang and H. Tang, An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids 36 (2007) 1307–1318. | DOI | Zbl

Cité par Sources :