A finite volume scheme based on minimization of a certain cell functional is constructed for unstructured polygonal meshes. This new scheme has a local stencil, allows arbitrary diffusion tensors, leads to a symmetric positive definite diffusion matrix in case that edge unknowns are defined at the midpoints of edges, and is linearity-preserving, i.e., preserves linear solutions. Under a very weak geometry condition, the stability result and discrete error estimate of the scheme is obtained through a discrete functional approach. Finally, numerical results on various mesh types (including a particular jigsaw puzzle mesh) demonstrate the good performance of the scheme and validate the theoretical analysis.
Mots clés : Cell functional minimization, finite volume scheme, diffusion problem, polygonal mesh, convergence, stability, error estimate
@article{M2AN_2015__49_1_193_0, author = {Yin, Li and Wu, Jiming and Gao, Zhiming}, title = {The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {193--220}, publisher = {EDP-Sciences}, volume = {49}, number = {1}, year = {2015}, doi = {10.1051/m2an/2014030}, mrnumber = {3342197}, zbl = {1314.65140}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014030/} }
TY - JOUR AU - Yin, Li AU - Wu, Jiming AU - Gao, Zhiming TI - The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 193 EP - 220 VL - 49 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014030/ DO - 10.1051/m2an/2014030 LA - en ID - M2AN_2015__49_1_193_0 ER -
%0 Journal Article %A Yin, Li %A Wu, Jiming %A Gao, Zhiming %T The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 193-220 %V 49 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014030/ %R 10.1051/m2an/2014030 %G en %F M2AN_2015__49_1_193_0
Yin, Li; Wu, Jiming; Gao, Zhiming. The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 193-220. doi : 10.1051/m2an/2014030. http://www.numdam.org/articles/10.1051/m2an/2014030/
A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Eq. 24 (2008) 1329–1360. | DOI | MR | Zbl
, , and ,A finite volume scheme for diffusion problem on general meshes applying monitny constraints. SIAM J. Numer. Anal. 47 (2010) 4193–4213. | DOI | MR | Zbl
, , and ,A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Model. Methods. Appl. Sci. 15 (2005) 1533–1551. | DOI | MR | Zbl
, and ,A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. | DOI | MR | Zbl
, , and ,A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Methods. Appl. Sci. 20 (2010) 265–295. | DOI | MR | Zbl
, , and ,R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. Elsevier Sciences (2000). | MR | Zbl
A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. | DOI | MR | Zbl
, and ,R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications. V. ISTE, London (2008) 659–692. | MR
D. Li and G. Chen, Introduction to difference methods for parabolic equation. Beijing, Science Press (1995) (Chinese).
A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. Comput. Phys. 144 (1998) 17–51. | DOI | MR | Zbl
, and ,J.E. Roberts and J.-M.Thomas, Mixed and hybrid finite element methods. Handb. Numer. Anal. Elsevier Sciences (1987).
Y. Saad, Iterative method for sparse linear systems. PWS publishing, New York (1996). | Zbl
Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys. 229 (2010) 3382–3401. | DOI | MR | Zbl
, , and ,A cell functional minimization scheme for parabolic problem. J. Comput. Phys. 229 (2010) 8935–8951. | DOI | MR | Zbl
, and ,A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes. Numer. Math. 128 (2014) 773–804. | DOI | MR | Zbl
, and ,Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem. Math. Model. Numer. Anal. 33 (1999) 493–516. | DOI | Numdam | MR | Zbl
, and ,Cité par Sources :