Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 39-67.

In this paper, we generalize the so-called inverse Lax−Wendroff boundary treatment [S. Tan and C.-W. Shu, J. Comput. Phys. 229 (2010) 8144–8166] for the inflow boundary of a linear hyperbolic problem discretized by the recently introduced central compact schemes [X. Liu, S. Zhang, H. Zhang and C.-W. Shu, J. Comput. Phys. 248 (2013) 235–256]. The outflow boundary is treated by the classical extrapolation and a stability analysis for the resulting scheme is provided. To ensure the stability of the considered schemes provided with the chosen boundaries, the G-K-S theory [B. Gustafsson, H.-O. Kreiss and A. Sundström, Math. Comput. 26 (1972) 649–686] is used, first in the semidiscrete case then in the fully discrete case with the third-order TVD Runge−Kutta time discretization. Afterwards, due to the high algebraic complexity of the G-K-S theory, the stability is analyzed by visualizing the eigenspectrum of the discretized operators. We show in this paper that the results obtained with these two different approaches are perfectly consistent. We also illustrate the high accuracy of the presented schemes on simple test problems.

Reçu le :
DOI : 10.1051/m2an/2014024
Classification : 65M12
Mots clés : Central compact schemes, initial boundary value problem, inverse Lax−Wendroff, extrapolation, G-K-S theory, eigenvalue spectrum
Vilar, François 1 ; Shu, Chi-Wang 1

1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
@article{M2AN_2015__49_1_39_0,
     author = {Vilar, Fran\c{c}ois and Shu, Chi-Wang},
     title = {Development and stability analysis of the inverse {Lax\ensuremath{-}Wendroff} boundary treatment for central compact schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {39--67},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014024},
     mrnumber = {3342192},
     zbl = {1311.65116},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014024/}
}
TY  - JOUR
AU  - Vilar, François
AU  - Shu, Chi-Wang
TI  - Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 39
EP  - 67
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014024/
DO  - 10.1051/m2an/2014024
LA  - en
ID  - M2AN_2015__49_1_39_0
ER  - 
%0 Journal Article
%A Vilar, François
%A Shu, Chi-Wang
%T Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 39-67
%V 49
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014024/
%R 10.1051/m2an/2014024
%G en
%F M2AN_2015__49_1_39_0
Vilar, François; Shu, Chi-Wang. Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 39-67. doi : 10.1051/m2an/2014024. http://www.numdam.org/articles/10.1051/m2an/2014024/

M. Carpenter, D. Gottlieb and S. Abarbanel, Time-stable conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111 (1994) 220–236. | DOI | MR | Zbl

M. Carpenter, J. Nordström and D. Gottlieb, A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148 (1999) 341–365. | DOI | MR | Zbl

G.S. Constantinescu and S.K. Lele, Large eddy simulation of a near sonic turbulent jet and its radiated noise. AIAA Paper 0376 (2001).

M. Goldberg, On a boundary extrapolation theorem by Kreiss. Math. Comput. 31 (1977) 469–477. | DOI | MR | Zbl

M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I. Math. Comput. 32 (1978) 1097–1107. | DOI | MR | Zbl

M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II. Math. Comput. 36 (1981) 603–626. | DOI | MR | Zbl

B. Gustafsson, On the implementation of boundary conditions for the methode of lines. BIT 38 (1998) 293–314. | DOI | MR | Zbl

B. Gustafsson, H.-O. Kreiss and J. Oliger, Time dependent problems and difference methods. John Wiley & Sons (1995). | MR | Zbl

B. Gustafsson, H.-O. Kreiss and A. Sundström, Stability theory of difference approximations for mixed initial boundary value problem. II. Math. Comput. 26 (1972) 649–686. | DOI | MR | Zbl

H.-O. Kreiss and G. Scherer, Finite element and finite difference methods for hyperbolic partial differential operators. Mathematical aspects of finite elements in partial differential equations. Academic Press, Orlando, FL (1974). | Zbl

H.-O. Kreiss and G. Scherer, On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Uppsala University, Sweden (1977).

S. Lee, S.K. Lele and P. Moin, Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340 (1997) 225–247. | DOI | MR | Zbl

S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1992) 16–42. | DOI | MR | Zbl

X. Liu, S. Zhang, H. Zhang and C.-W. Shu, A new class of central compact schemes with spectral-like resolution I: linear schemes. J. Comput. Phys. 248 (2013) 235–256. | DOI | MR | Zbl

K. Mahesh, S.K. Lele and P. Moin, The influence of entropy fluctuation on the interaction of turbulence with a shock wave. J. Fluid Mech. 334 (1997) 353–379. | DOI | MR | Zbl

K. Mattsson, Boundary procedure for summation-by-parts operators. J. Sci. Comput. 18 (2003) 133–153. | DOI | MR | Zbl

K. Mattsson and J. Nordström, Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199 (2004) 503–540. | DOI | MR | Zbl

P. Moin, K. Squires, W. Cabot and S. Lee, A dynamic subgridscale model for compressible turbulence and scalar transport. Phys. Fluid 3 (1991) 2746–2757. | DOI | Zbl

P. Olson, Summation by parts, projection and stability: I. Math. Comput. 64 (1995) 1035–1065. | DOI | MR | Zbl

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. | DOI | MR | Zbl

B. Strand, Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110 (1994) 47–67. | DOI | MR | Zbl

J.C. Strikwerda, Initial boundary value problems for the method of lines. J. Comput. Phys. 34 (1980) 94–107. | DOI | MR | Zbl

S. Tan and C.-W. Shu, Inverse Lax−Wendroff procedure for numerical boundary conditions of conservations laws. J. Comput. Phys. 229 (2010) 8144–8166. | DOI | MR | Zbl

S. Tan, C. Wang, C.-W. Shu and J. Ning, Efficient implementation of high order inverse Lax−Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231 (2012) 2510–2527. | DOI | MR | Zbl

Cité par Sources :