On the Numerical Integration of Scalar Nonlocal Conservation Laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 19-37.

We study a rather general class of 1D nonlocal conservation laws from a numerical point of view. First, following [F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885], we define an algorithm to numerically integrate them and prove its convergence. Then, we use this algorithm to investigate various analytical properties, obtaining evidence that usual properties of standard conservation laws fail in the nonlocal setting. Moreover, on the basis of our numerical integrations, we are led to conjecture the convergence of the nonlocal equation to the local ones, although no analytical results are, to our knowledge, available in this context.

DOI : 10.1051/m2an/2014023
Classification : 35L65
Mots-clés : Nonlocal conservation laws, Lax Friedrichs scheme
Amorim, Paulo 1 ; Colombo, Rinaldo M. 2 ; Teixeira, Andreia 3

1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, C.P. 68530, Cidade Universitária 21945–970, Rio de Janeiro, Brazil.
2 Unità INdAM, Università di Brescia, Via Branze 38, 25123 Brescia, Italy.
3 Centro de Matemática e Aplicações Fundamentais, Departamento de Matemática, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.
@article{M2AN_2015__49_1_19_0,
     author = {Amorim, Paulo and Colombo, Rinaldo M. and Teixeira, Andreia},
     title = {On the {Numerical} {Integration} of {Scalar} {Nonlocal} {Conservation} {Laws}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {19--37},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014023},
     mrnumber = {3342191},
     zbl = {1317.65165},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2014023/}
}
TY  - JOUR
AU  - Amorim, Paulo
AU  - Colombo, Rinaldo M.
AU  - Teixeira, Andreia
TI  - On the Numerical Integration of Scalar Nonlocal Conservation Laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 19
EP  - 37
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2014023/
DO  - 10.1051/m2an/2014023
LA  - en
ID  - M2AN_2015__49_1_19_0
ER  - 
%0 Journal Article
%A Amorim, Paulo
%A Colombo, Rinaldo M.
%A Teixeira, Andreia
%T On the Numerical Integration of Scalar Nonlocal Conservation Laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 19-37
%V 49
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2014023/
%R 10.1051/m2an/2014023
%G en
%F M2AN_2015__49_1_19_0
Amorim, Paulo; Colombo, Rinaldo M.; Teixeira, Andreia. On the Numerical Integration of Scalar Nonlocal Conservation Laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 19-37. doi : 10.1051/m2an/2014023. http://www.numdam.org/articles/10.1051/m2an/2014023/

S. Berres, R. Bürger, K.H. Karlsen and E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64 (2003) 41–80. | DOI | MR | Zbl

F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885. | DOI | MR | Zbl

A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, vol. 20 of Oxford Lect. Ser. Math. Applications. Oxford University Press, Oxford (2000). | MR | Zbl

F. Caetano, The linearization of a boundary value problem for a scalar conservation law. Commun. Math. Sci. 6 (2008) 651–667. | DOI | MR | Zbl

J.A. Carrillo, R.M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws. J. Differ. Eqs. 252 (2012) 3245–3277. | DOI | MR | Zbl

R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023, 34. | DOI | MR | Zbl

R.M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow. ESAIM: COCV 17 (2011) 353–379. | Numdam | MR | Zbl

R.M. Colombo and M. Lécureux-Mercier, Nonlocal Crowd Dynamics Models for Several Populations. Acta Math. Sci. Ser. B Engl. Ed. 32 (2012) 177–196. | DOI | MR | Zbl

R.M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37–65. | DOI | MR | Zbl

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. Nonlinear Differ. Eqs. Appl. NoDEA (2012) 1–15. | MR | Zbl

C.M. Dafermos, Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 3rd edition (2010). | MR | Zbl

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65 (2012) 35–75. | DOI | MR | Zbl

A. Friedman, Conservation laws in mathematical biology. Discrete Contin. Dyn. Syst. 32 (2012) 3081–3097. | DOI | MR | Zbl

L. Gosse and F. James. Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comput. 69 987–1015, 2000. | DOI | MR | Zbl

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differ. Eqs. 248 (2010) 2703–2735. | DOI | MR | Zbl

S. Gttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts. Prepint Reihe des Stuttgart Research Center for Simulation Technology, 746 (2013).

K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN 35 (2001) 239–269. | DOI | Numdam | MR | Zbl

S.N. Kružhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) (123) 228–255. | MR | Zbl

R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl

M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A. 229 (1955) 317–345. | DOI | MR | Zbl

J. Nieto, F. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Ration. Mech. Anal. 158 (2001) 29–59. | DOI | MR | Zbl

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199 (2011) 707–738. | DOI | MR | Zbl

P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. | DOI | MR | Zbl

Cité par Sources :