In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.
Mots-clés : low Mach number flows, modelling of phase transition, analytical solutions, method of characteristics, positivity-preserving schemes
@article{M2AN_2014__48_6_1639_0, author = {Bernard, Manuel and Dellacherie, St\'ephane and Faccanoni, Gloria and Grec, B\'er\'enice and Penel, Yohan}, title = {Study of a low {Mach} nuclear core model for two-phase flows with phase transition {I:} stiffened gas law}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1639--1679}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014015}, mrnumber = {3264368}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014015/} }
TY - JOUR AU - Bernard, Manuel AU - Dellacherie, Stéphane AU - Faccanoni, Gloria AU - Grec, Bérénice AU - Penel, Yohan TI - Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1639 EP - 1679 VL - 48 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014015/ DO - 10.1051/m2an/2014015 LA - en ID - M2AN_2014__48_6_1639_0 ER -
%0 Journal Article %A Bernard, Manuel %A Dellacherie, Stéphane %A Faccanoni, Gloria %A Grec, Bérénice %A Penel, Yohan %T Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1639-1679 %V 48 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014015/ %R 10.1051/m2an/2014015 %G en %F M2AN_2014__48_6_1639_0
Bernard, Manuel; Dellacherie, Stéphane; Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan. Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1639-1679. doi : 10.1051/m2an/2014015. http://www.numdam.org/articles/10.1051/m2an/2014015/
[1] TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Models. Technical report, U.S. Nuclear Regulatory Commission (2008).
[2] Method of characteristics technique. Application to heat and mass transfer problems. Ind. Eng. Chem. 48 (1956) 703-710.
,[3] A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I 344 (2007) 135-140. | MR | Zbl
, and ,[4] Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922.
, , and ,[5] Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927.
, , and ,[6] Study of low Mach nuclear core model for single-phase flow. ESAIM Proc. 38 (2012) 118-134. | MR
, , , , , and .[7] The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229-245.
.[8] Thermodynamics and an Introduction to Thermostatistics. 2nd edition. John Wiley and sons (1985). | Zbl
,[9] Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4 (1984) 1001-1012. | Zbl
and ,[10] Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows. J. Comput. Phys. 181 (2002) 577-616. | MR | Zbl
,[11] A projection method for low speed flows. J. Comput. Phys. 149 (1999) 245-269. | MR | Zbl
and ,[12] Thermohydraulique des réacteurs. EDP sciences (2008).
,[13] On a diphasic low Mach number system. ESAIM: M2AN 39 (2005) 487-514. | Numdam | MR | Zbl
,[14] Numerical resolution of a potential diphasic low Mach number system. J. Comput. Phys. 223 (2007) 151-187. | MR | Zbl
,[15] Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978-1016. | MR
,[16] On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79-106. | MR
,[17] 2D numerical simulation of a low Mach nuclear core model with stiffened gas using Freefem++. ESAIM. Proc. (accepted).
, , , , and ,[18] Study of low Mach nuclear core model for two-phase flows with phase transition II: tabulated EOS. In preparation.
, , and ,[19] A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. Int. J. Heat Mass Transfer 63 (2013) 401-413.
, and ,[20] Numerical methods for fluid dynamics, With applications to Geophysics, vol. 32 of Texts in Applied Mathematics. Springer, 2nd edition. New York (2010). | MR | Zbl
,[21] Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differ. Equ. 12 (1987) 1227-1283. | MR | Zbl
,[22] Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition. Ph.D. thesis, École Polytechnique, France (2008).
,[23] Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 1029-1054 2012. | Numdam | MR | Zbl
, and ,[24] FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des. 241 (2011) 4348-4358.
, , and ,[25] Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids 39 (2010) 99-113. | MR | Zbl
and ,[26] An exact solution for flow transients in two-phase systems by the method of characteristics. J. Heat Transfer 95 (1973) 470-476.
and ,[27] Thermodynamics and statistical mechanics. Springer (1997). | Zbl
, and ,[28] On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | MR | Zbl
and ,[29] Étude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).
,[30] A projection method for combustion in the zero Mach number limit, in Proc. of 11th AIAA Comput. Fluid Dyn. Conf. (1993) 776-783.
, and .[31] Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265-276,.
, and ,[32] Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567-610. | MR | Zbl
, and ,[33] Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg MD, 20899.
, and ,[34] Simplified equations for low Mach number combustion with strong heat release, Dynamical issues in combustion theory, vol. 35 of IMA Vol. Math. Appl. Springer-Verlag (1991). | MR | Zbl
and ,[35] The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42 (1985) 185-205.
and ,[36] The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61 (1989) 75-130. | MR | Zbl
and ,[37] The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28 (2006) 651-681. | MR | Zbl
and ,[38] An explicit stable numerical scheme for the 1D transport equation. Discrete Contin. Dyn. Syst. Ser. S 5 (2012) 641-656. | MR | Zbl
,[39] Existence of global solutions to the 1D abstract bubble vibration model. Differ. Integral Equ. 26 (2013) 59-80. | MR | Zbl
,[40] Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313-350. | MR | Zbl
, and ,[41] Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut. 6 (1979) 631-645. | Zbl
,[42] Performance of compressible flow codes at low Mach numbers. AIAA J. 31 (1993) 49-56. | Zbl
,[43] Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state. Ph.D. thesis, RWTH Aachen (2005). | Zbl
,[44] Flow excursions and oscillations in boiling, two-phase flow systems with heat addition, in Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e (1967) 1071-1089.
,Cité par Sources :