In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ -1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222]. We also get the corrector results.
Mots clés : periodic unfolding method, heat equation, interface problems, homogenization, correctors
@article{M2AN_2014__48_5_1279_0, author = {Yang, Zhanying}, title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1279--1302}, publisher = {EDP-Sciences}, volume = {48}, number = {5}, year = {2014}, doi = {10.1051/m2an/2013139}, mrnumber = {3264354}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013139/} }
TY - JOUR AU - Yang, Zhanying TI - The periodic unfolding method for a class of parabolic problems with imperfect interfaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1279 EP - 1302 VL - 48 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013139/ DO - 10.1051/m2an/2013139 LA - en ID - M2AN_2014__48_5_1279_0 ER -
%0 Journal Article %A Yang, Zhanying %T The periodic unfolding method for a class of parabolic problems with imperfect interfaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1279-1302 %V 48 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013139/ %R 10.1051/m2an/2013139 %G en %F M2AN_2014__48_5_1279_0
Yang, Zhanying. The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1279-1302. doi : 10.1051/m2an/2013139. http://www.numdam.org/articles/10.1051/m2an/2013139/
[1] Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197-231. | MR | Zbl
, and ,[2] An Introduction to Homogenization. Oxford University Press (1999). | MR | Zbl
and ,[3] The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718-760. | MR | Zbl
, , , and ,[4] Periodic unfolding and homogenization. C.R. Acad. Sci., Paris, Sér. I, Math. 335 (2002) 99-104. | MR | Zbl
, and ,[5] The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | MR | Zbl
, and ,[6] The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006) 467-496. | MR | Zbl
, and ,[7] Conduction of heat in solids. Clarendon Press, Oxford (1947). | MR | Zbl
and ,[8] Some corrector results for composites with imperfect interface. Rend. Mat. Appl., VII. Ser. 26 (2006) 189-209. | MR | Zbl
,[9] P. Donato, L. Faella and S Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87 (2007) 119-143. | MR | Zbl
[10] Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952-1978. | MR | Zbl
, and ,[11] Corrector results for a parabolic problem with a memory effect. ESAIM: M2AN 44 (2010) 421-454. | Numdam | MR | Zbl
and ,[12] Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 247-273. | MR | Zbl
and ,[13] The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci. 176 (2011) 891-927. | MR | Zbl
, and ,[14] Homogenization and correctors for the heat equation in perforated domains. Ricerche Mat. 50 (2001) 115-144. | MR | Zbl
and ,[15] The periodic unfolding method for the wave equations in domains with holes. Adv. Math. Sci. Appl. 22 (2012) 521-551. | MR | Zbl
and ,[16] Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107-121. | MR | Zbl
and ,[17] Homogénéisation et correcteurs pour quelques problèmes hyperboliques, Ph.D. Thesis, University of Paris VI, France (2009).
,[18] Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl. 54 (2009) 189-222. | MR | Zbl
,[19] Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43-63. | MR | Zbl
,[20] Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 14 (2004) 375-377. | MR | Zbl
,[21] Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar, 1976. Jpn. Soc. Promot. Sci. (1978) 468-482.
,Cité par Sources :