Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1147-1169.

This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.

DOI : 10.1051/m2an/2013133
Classification : 35L85, 35L05, 65N30, 74M15
Mots-clés : existence, uniqueness, convergence, mass redistribution method, variational inequality, unilateral contact
@article{M2AN_2014__48_4_1147_0,
     author = {Dabaghi, Farshid and Petrov, Adrien and Pousin, J\'er\^ome and Renard, Yves},
     title = {Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1147--1169},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     doi = {10.1051/m2an/2013133},
     mrnumber = {3264349},
     zbl = {1297.35148},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2013133/}
}
TY  - JOUR
AU  - Dabaghi, Farshid
AU  - Petrov, Adrien
AU  - Pousin, Jérôme
AU  - Renard, Yves
TI  - Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1147
EP  - 1169
VL  - 48
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2013133/
DO  - 10.1051/m2an/2013133
LA  - en
ID  - M2AN_2014__48_4_1147_0
ER  - 
%0 Journal Article
%A Dabaghi, Farshid
%A Petrov, Adrien
%A Pousin, Jérôme
%A Renard, Yves
%T Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1147-1169
%V 48
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2013133/
%R 10.1051/m2an/2013133
%G en
%F M2AN_2014__48_4_1147_0
Dabaghi, Farshid; Petrov, Adrien; Pousin, Jérôme; Renard, Yves. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1147-1169. doi : 10.1051/m2an/2013133. http://www.numdam.org/articles/10.1051/m2an/2013133/

[1] P. Alart and A. Curnier, A generalized Newton method for contact problems with friction. J. Mech. Theor. Appl. 7 (1988) 67-82. | MR | Zbl

[2] F. Armero and E. Petocz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269-300. | MR | Zbl

[3] J.P. Aubin, Approximation of elliptic boundary-value problems. Pure and Applied Mathematics, Vol. XXVI. Wiley-Interscience (1972). | MR | Zbl

[4] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370-373. | MR | Zbl

[5] D. Bárcenas, The fundamental theorem of calculus for Lebesgue integral. Divulg. Mat. 8 (2000) 75-85. | MR | Zbl

[6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973). | MR | Zbl

[7] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984). | MR | Zbl

[8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. INSTN: Collection Enseignement. Masson, Paris (1988). | Zbl

[9] K. Deimling, Multivalued differential equations. Vol. 1 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992). | MR | Zbl

[10] D. Doyen and A. Ern, Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun. Math. Sci. 7 (2009) 1063-1072. | MR | Zbl

[11] D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. (2011) 223-249. | MR

[12] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci., vol. 159. Springer-Verlag, New York (2004). | MR | Zbl

[13] C. Hager and B.I. Wohlmuth, Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Num. Anal. 47 (2009) 1863-1885. | MR

[14] P. Hauret, Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2941-2957. | MR | Zbl

[15] T.J.R. Hugues, R.L. Taylor, J.L. Sackman, A. Curnier and W. Kano Knukulchai, A finite method for a class of contact-impact problems. Comput. Methods Appl. Mech. Engrg. 8 (1976) 249-276. | Zbl

[16] H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918-932. | MR | Zbl

[17] S. Krenk, Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6110-6124. | MR | Zbl

[18] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies Appl. Math. SIAM, Philadelphia, Pa (1988). | MR | Zbl

[19] J.U. Kim, A boundary thin obstacle problem for a wave equation. Commun. Partial Differential Eqs. 14 (1989) 1011-1026. | MR | Zbl

[20] T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863-886. | MR | Zbl

[21] T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245-274. | MR | Zbl

[22] G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Eqs. 53 (1984) 309-361. | MR | Zbl

[23] J.-J. Moreau, Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 296 (1983) 1473-1476. | MR | Zbl

[24] J.-J. Moreau and P.D. Panagiotopoulos, Nonsmooth mechanics and applications. Vol. 302 of CISM Courses Lect. Springer-Verlag, Vienna (1988). | MR | Zbl

[25] L. Paoli, Time discretization of vibro-impact. R. Soc. London Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2405-2428. | MR | Zbl

[26] L. Paoli and M. Schatzman, A numerical scheme for impact problem I. SIAM J. Numer. Anal. 40 (2002) 702-733. | MR | Zbl

[27] L. Paoli and M. Schatzman, Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 1003-1007. | MR | Zbl

[28] Y. Renard, Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engng. 256 (2013) 38-55. | MR

[29] Y. Renard and J. Pommier, Getfem++. An Open Source generic C++ library for finite element methods. http://home.gna.org/getfem.

[30] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edn (1974). | MR | Zbl

[31] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138-191. | MR | Zbl

[32] M. Schatzman and M. Bercovier, Numerical approximation of a wave equation with unilateral constraints. Math. Comput. 53 (1989) 55-79. | MR | Zbl

[33] K. Schweizerhof, J.O. Hallquist and D. Stillman, Efficiency refinements of contact strategies and algorithms in explicit finite element programming. Compt. Plasticity. Edited by Owen, Onate, Hinton, Pineridge (1992) 457-482.

[34] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR | Zbl

[35] P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd. (2002).

Cité par Sources :