We introduce a new stable MINI-element pair for incompressible Stokes equations on quadrilateral meshes, which uses the smallest number of bubbles for the velocity. The pressure is discretized with the P1-midpoint-edge-continuous elements and each component of the velocity field is done with the standard Q1-conforming elements enriched by one bubble a quadrilateral. The superconvergence in the pressure of the proposed pair is analyzed on uniform rectangular meshes, and tested numerically on uniform and non-uniform meshes.
Mots-clés : MINI-element, superconvergence
@article{M2AN_2014__48_4_955_0, author = {Kwon, Oh-In and Park, Chunjae}, title = {A new quadrilateral {MINI-element} for {Stokes} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {955--968}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/m2an/2013129}, mrnumber = {3264342}, zbl = {1299.76140}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013129/} }
TY - JOUR AU - Kwon, Oh-In AU - Park, Chunjae TI - A new quadrilateral MINI-element for Stokes equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 955 EP - 968 VL - 48 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013129/ DO - 10.1051/m2an/2013129 LA - en ID - M2AN_2014__48_4_955_0 ER -
%0 Journal Article %A Kwon, Oh-In %A Park, Chunjae %T A new quadrilateral MINI-element for Stokes equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 955-968 %V 48 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013129/ %R 10.1051/m2an/2013129 %G en %F M2AN_2014__48_4_955_0
Kwon, Oh-In; Park, Chunjae. A new quadrilateral MINI-element for Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 955-968. doi : 10.1051/m2an/2013129. http://www.numdam.org/articles/10.1051/m2an/2013129/
[1] A stable finite element for the Stokes equations. CALCOLO 21 (1984) 337-344. | MR | Zbl
, and ,[2] The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl
,[3] The quadrilateral ‘Mini' finite element for the Stokes problem. Comput. Methods Appl. Mech. Eng. 143 (1997) 41-47. | MR | Zbl
,[4] On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. R2 8 (1974) 129-151. | Numdam | MR | Zbl
,[5] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO: M2AN 33 (1999) 747-770. | Numdam | MR | Zbl
, , and ,[6] Supercloseness and superconvergence of stabilized low order finite element discretization of the Stokes Problem. Math. Comput. 80 (2011) 697-722. | MR
, and ,[7] Continuous Q1-Q1 Stokes elements stabilized with non-conforming null edge average velocity functions. Math. Models Meth. Appl. Sci. 17 (2007) 439-459. | MR | Zbl
, and ,[8] Finite element methods for the Navier-Stokes equations: Theory and Algorithms. Springer-Verlag, New York (1986). | MR | Zbl
and ,[9] P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624-640. | MR | Zbl
and ,[10] Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eq. 8 (1992) 97-111. | MR | Zbl
and ,Cité par Sources :