Interface model coupling via prescribed local flux balance
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 895-918.

This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition, the second method preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and steady solutions.

DOI : 10.1051/m2an/2013125
Classification : 35L50, 35L60, 35L65, 35L67, 35L81, 76M12
Mots-clés : gas dynamics equations, interfacial coupling, measure valued load, relaxation method, coupled Riemann problem
@article{M2AN_2014__48_3_895_0,
     author = {Ambroso, Annalisa and Chalons, Christophe and Coquel, Fr\'ed\'eric and Gali\'e, Thomas},
     title = {Interface model coupling \protect\emph{via }prescribed local flux balance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {895--918},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     doi = {10.1051/m2an/2013125},
     zbl = {1292.35166},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2013125/}
}
TY  - JOUR
AU  - Ambroso, Annalisa
AU  - Chalons, Christophe
AU  - Coquel, Frédéric
AU  - Galié, Thomas
TI  - Interface model coupling via prescribed local flux balance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 895
EP  - 918
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2013125/
DO  - 10.1051/m2an/2013125
LA  - en
ID  - M2AN_2014__48_3_895_0
ER  - 
%0 Journal Article
%A Ambroso, Annalisa
%A Chalons, Christophe
%A Coquel, Frédéric
%A Galié, Thomas
%T Interface model coupling via prescribed local flux balance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 895-918
%V 48
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2013125/
%R 10.1051/m2an/2013125
%G en
%F M2AN_2014__48_3_895_0
Ambroso, Annalisa; Chalons, Christophe; Coquel, Frédéric; Galié, Thomas. Interface model coupling via prescribed local flux balance. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 895-918. doi : 10.1051/m2an/2013125. http://www.numdam.org/articles/10.1051/m2an/2013125/

[1] M.S. Adimurthi and G.D.V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783-837. | MR | Zbl

[2] D. Amadori, L. Gosse, G. Graziano, Godunov-type approximation for a general resonant balance law with large data. J. Differ. Equ. 198 (2004) 233-274. | MR | Zbl

[3] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. Int. J. Finite Volumes 4 (2007) 1-39. | MR

[4] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, Coupling of general Lagrangian systems. Math. Comput. 77 (2008) 909-941. | MR | Zbl

[5] A. Ambroso, J.-M. Hérard and O. Hurisse, A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738-756. | MR | Zbl

[6] E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005) 253-265. | MR | Zbl

[7] F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Commun. Partial Differential Equations 31 (2006) 371-395. | MR | Zbl

[8] D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, A. Guelfi, J.M. Hérard, E. Hervieu, P. Péturaud, Neptune: a new software platform for advanced nuclear thermal hydraulics. Nuclear Science and Engineering 156 (2007) 281-324.

[9] F. Bouchut, Nonlinear stability of Finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics, Birkhauser (2004). | MR | Zbl

[10] B. Boutin, C. Chalons and P.A. Raviart, Existence result for the coupling problem of two scalar conservation laws with Riemann initial data. Math. Models Methods Appl. Sci. 20 (2010) 1859-1898. | MR | Zbl

[11] B. Boutin, F. Coquel and P.G. Lefloch, Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces. Proc. Roy. Soc. Edinburgh Sect. A 141 (2011) 921-956. | MR | Zbl

[12] M. Bucci and P. Fillion, Analysis of the NUPEC PSBT Tests with FLICA-OVAP. Science and Technology of Nuclear Installations. Article ID 2012 (2012) 436142.

[13] R. Bürger and K.H. Karlsen, Conservation laws with discontinuous flux: a short introduction. J. Engrg. Math. 60 (2008) 241-247. | MR | Zbl

[14] R. Bürger, K.H. Karlsen and J.D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47 (2009) 1684-1712. | MR | Zbl

[15] C. Chalons, P.-A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations. Quaterly of Applied Mathematics 66 (2008) 659-705. | MR | Zbl

[16] C.M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973) 1-9. | MR | Zbl

[17] S. Diehl, On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26 (1995) 1425-1451. | MR | Zbl

[18] S. Diehl, Scalar conservation laws with discontinuous flux function. I. The viscous profile condition, Commun. Math. Phys. 176 (1996) 23-44. | MR | Zbl

[19] W.H. Hager, Wastewater Hydraulics, Theory and Practice. Springer (2010).

[20] T. Galié, Couplage interfacial de modèles pour la thermoohydraulique des réacteurs, Ph.D. thesis, Université Pierre et Marie Curie Paris 6 (2008).

[21] T. Gimse and N.H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635-648. | MR | Zbl

[22] J. Glimm, D. Marchesin and O. Mcbryan, Numerical method for two phase flow with unstable interface. J. Comput. Phys. 39 (1981) 179-200. | MR | Zbl

[23] P. Goatin and P.G. Lefloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR | Zbl

[24] E. Godlewski, K.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. M2AN Math. Model. Numer. Anal. 39 (2005) 649-692. | Numdam | MR | Zbl

[25] E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81-130. | MR | Zbl

[26] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. | MR | Zbl

[27] L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp. 71 (2001) 553-582. | MR | Zbl

[28] J.M. Greenberg and A.Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | MR | Zbl

[29] E. Isaacson and B.J. Temple, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR | Zbl

[30] J.M. Greenberg, A.Y.L. Roux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980-2007. | MR | Zbl

[31] J.-M. Hérard, Schemes to couple flows between free and porous medium. Proceedings of AIAA (2005) 2005-4861.

[32] J.-M. Hérard and O. Hurisse, Coupling two and one-dimensional models through a thin interface. Proceedings of AIAA (2005) 2005-4718.

[33] J.-M. Hérard and O. Hurisse, Boundary conditions for the coupling of two-phase flow models. 18th AIAA CFD conference.

[34] I.E. Idel'Cik, Memento des pertes de charges. Coefficients de pertes de charges singulières et de pertes de charges par frottement. Collection Direction des Etudes et Recherches d'EDF. Eyrolles [in French] (1986).

[35] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235-276. | MR | Zbl

[36] V.G. Kourakos, P. Rambaud, S. Chabane and J.M. Buchlin, Modeling of pressure drop in two-phase flow in singular geometries. 6th International Symposium on Multiphase Flow, Heat Mass Transfert and Energy Conservation. Xi'an, China, 11-15 July 2009, Paper No MN-30, 2009.

[37] D.S. Miller (Ed.), Discharge Characteristics: IAHR Hydraulic Structures Design Manuals 8. Balkema: Rotterdam (1994).

[38] S.N. Kruzkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. | MR | Zbl

Cité par Sources :