In a recent paper [E. Chacón Vera and D. Franco Coronil, J. Numer. Math. 20 (2012) 161-182.] a non standard mortar method for incompressible Stokes problem was introduced where the use of the trace spaces H1 / 2and H1/200and a direct computation of the pairing of the trace spaces with their duals are the main ingredients. The importance of the reduction of the number of degrees of freedom leads naturally to consider the stabilized version and this is the results we present in this work. We prove that the standard Brezzi-Pitkaranta stabilization technique is available and that it works well with this mortar method. Finally, we present some numerical tests to illustrate this behaviour.
Mots-clés : incompressible Stokes problem, non-standard FETI-DP
@article{M2AN_2014__48_1_285_0, author = {Chac\'on Vera, E. and Chac\'on Rebollo, T.}, title = {Stabilization of a non standard {FETI-DP} mortar method for the {Stokes} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {285--304}, publisher = {EDP-Sciences}, volume = {48}, number = {1}, year = {2014}, doi = {10.1051/m2an/2013102}, mrnumber = {3177845}, zbl = {1299.76131}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013102/} }
TY - JOUR AU - Chacón Vera, E. AU - Chacón Rebollo, T. TI - Stabilization of a non standard FETI-DP mortar method for the Stokes problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 285 EP - 304 VL - 48 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013102/ DO - 10.1051/m2an/2013102 LA - en ID - M2AN_2014__48_1_285_0 ER -
%0 Journal Article %A Chacón Vera, E. %A Chacón Rebollo, T. %T Stabilization of a non standard FETI-DP mortar method for the Stokes problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 285-304 %V 48 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013102/ %R 10.1051/m2an/2013102 %G en %F M2AN_2014__48_1_285_0
Chacón Vera, E.; Chacón Rebollo, T. Stabilization of a non standard FETI-DP mortar method for the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 1, pp. 285-304. doi : 10.1051/m2an/2013102. http://www.numdam.org/articles/10.1051/m2an/2013102/
[1] Sobolev Spaces. In vol. 65 of Pure and Applied Mathematics. Academic Press, New York, London (1975). | MR | Zbl
,[2] A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. | MR | Zbl
, and ,[3] The Mortar finite element method with Lagrange multipliers. Numerische Mathematik 84 (1999) 173-197. | MR | Zbl
,[4] A FETI method with a mesh independent condition number for the iteration matrix. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1410-1429. | MR | Zbl
, and ,[5] A new nonconforming approach to domain decomposition: the mortar element method, edited by H. Brezis and J.-L. Lions. Collège de France Seminar XI, Pitman (1994) 13-51. | MR | Zbl
, and ,[6] A continuous framework for FETI-DP with a mesh independent condition number for the dual problem. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2470-2483. | MR | Zbl
,[7] A non standard FETI-DP mortar method for Stokes Problem. Proceedings of the 3rd FreeFem++ days, Paris, 2011. J. Numer. Math. 20 (2012) 161-182. | MR | Zbl
, and ,[8] http://www.freefem.org/ff++
[9] Stabilized Finite Element Methods, in Incompressible Computational Fluid Dynamics, chap. 4, edited by M. Gunzburger and R.A. Nicolaides. Cambridge Univ. Press, Cambridge (1993) 87-107. | MR | Zbl
, and ,[10] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, vol. 5 of Springer Series in Comput. Math. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[11] Singularities in Boundary value problems, vol. 22 of Recherches en Mathématiques Appliquées, Masson (1992). | MR | Zbl
,[12] A dual iterative substructuring method with a penalty term, Numerische Mathematik V. 112 (2009) 89-113. | MR | Zbl
and ,[13] Primal Hybrid Finite Element Methods for second order elliptic equations. Math. Comput. 31 (1977) 391-413. | MR | Zbl
and ,Cité par Sources :