Quadratic finite elements with non-matching grids for the unilateral boundary contact
ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1185-1205.

We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper accuracy of the quadratic finite elements. This approach has already been used and proved to be reliable for the unilateral contact problems even for large deformations. We provide however some numerical examples to support the theoretical predictions.

DOI : 10.1051/m2an/2012064
Classification : 35J85, 65N30, 74M15
Mots-clés : unilateral contact conditions, quadratic finite elements, non-matching grids, mortar matching
@article{M2AN_2013__47_4_1185_0,
     author = {Auliac, S. and Belhachmi, Z. and Ben Belgacem, F. and Hecht, F.},
     title = {Quadratic finite elements with non-matching grids for the unilateral boundary contact},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1185--1205},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {4},
     year = {2013},
     doi = {10.1051/m2an/2012064},
     mrnumber = {3082294},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2012064/}
}
TY  - JOUR
AU  - Auliac, S.
AU  - Belhachmi, Z.
AU  - Ben Belgacem, F.
AU  - Hecht, F.
TI  - Quadratic finite elements with non-matching grids for the unilateral boundary contact
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1185
EP  - 1205
VL  - 47
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2012064/
DO  - 10.1051/m2an/2012064
LA  - en
ID  - M2AN_2013__47_4_1185_0
ER  - 
%0 Journal Article
%A Auliac, S.
%A Belhachmi, Z.
%A Ben Belgacem, F.
%A Hecht, F.
%T Quadratic finite elements with non-matching grids for the unilateral boundary contact
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1185-1205
%V 47
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2012064/
%R 10.1051/m2an/2012064
%G en
%F M2AN_2013__47_4_1185_0
Auliac, S.; Belhachmi, Z.; Ben Belgacem, F.; Hecht, F. Quadratic finite elements with non-matching grids for the unilateral boundary contact. ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1185-1205. doi : 10.1051/m2an/2012064. http://www.numdam.org/articles/10.1051/m2an/2012064/

[1] R.A. Adams, Sobolev Spaces. Academic Press (1975). | MR | Zbl

[2] A.K. Aziz and I. Babuška, The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York (1972). | MR | Zbl

[3] L. Baillet and T. Sassi, Mixed finite element formulation in large deformation frictional contact problem. European J. Comput. Mech. 14 (2005) 287-304. | Zbl

[4] Z. Belhachmi and F. Ben Belgacem, Quadratic finite element for Signorini problem. Math. Comput. 72 (2003) 83-104. | MR | Zbl

[5] F. Ben Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9 (1999) 287-303. | MR | Zbl

[6] F. Ben Belgacem, Y. Renard and L. Slimane, A Mixed Formulation for the Signorini Problem in nearly Incompressible Elasticity. Appl. Numer. Math. 54 (2005) 1-22. | MR | Zbl

[7] F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Signorini problem. Math. Comput. 72 (2003) 1117-1145. | MR | Zbl

[8] C. Bernardi, Y. Maday and A.T. Patera,A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method, Collège de France seminar, edited by H. Brezis, J.-L. Lions. Pitman (1994) 13-51. | MR | Zbl

[9] S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Texts Appl. Math. Springer Verlag, New-York 15 (1994). | MR | Zbl

[10] J.-F. Bonnans, J. Ch. Gilbert, C. Lemaréchal and C.A. Sagastizábal, Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. translation of 1997 French ed.). Springer-Verlag, Berlin (2006). | MR | Zbl

[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series Comput. Math., vol. 15. Springer Verlag, New York (1991). | MR | Zbl

[12] F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431-443. | EuDML | MR | Zbl

[13] L. Cazabeau, Y. Maday and C. Lacour, Numerical quadratures and mortar methods. In Computational Sciences for the 21-st Century, edited by Bristeau et al., Wiley and Sons (1997) 119-128. | Zbl

[14] A. Chernov, M. Maischak and E.P. Stephan, hp-mortar boundary element method for two-body contact problems with friction. Math. Methods Appl. Sci. 31 (2008) 2029-2054. | MR | Zbl

[15] P.-G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). | MR | Zbl

[16] M. Crouzeix and V. Thomée, The Stability in Lp and W1,p of the L2-Projection on Finite Element Function Spaces. Mathods Comput. 48 (1987) 521-532. | MR | Zbl

[17] G. Duvaut and J.-P. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). | Zbl

[18] S. Faletta, The Approximate Integration in the Mortar Method Constraint. Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng. Part III, 55 (2007) 555-563. | MR

[19] R.S. Falk, Error Estimates for the Approximation of a Class of Variational Inequalities. Math. Comput. 28 963-971 (1974). | MR | Zbl

[20] K.A. Fischer and P. Wriggers, Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech. 36 (2005) 226-244. | Zbl

[21] B. Flemisch, M.A. Puso and B.I. Wohlmuth, A new dual mortar method for curved interfaces: 2D elasticity. Internat. J. Numer. Methods Eng. 63 (2005) 813-832. | MR | Zbl

[22] J. Haslinger, I. Hlavcáček and J. Nečas, Numerical Methods for Unilateral Problems in Solid Mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, edited by P.G. Ciarlet and J.L. Lions. North Holland (1996). | MR | Zbl

[23] F. Hecht, Freefem++. Third Edition, Version 3.11-1 http://www.freefem.org/ff++http://www.freefem.org/ff++.

[24] P. Hild and Y. Renard, An improved a priori error analysis for finite element approximations of Signorini's problem. SIAM J. Numer. Analys. to appear (2012). | MR | Zbl

[25] P. Hild, Problèmes de contact unilatéral et maillages éléments finis incompatibles. Thèse de l'Université Paul Sabatier, Toulouse 3 (1998).

[26] P. Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184 (2000) 99-123. | MR | Zbl

[27] P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41 (2002) 401-421. | MR | Zbl

[28] D. Hua, L. Wang. A mixed finite element method for the unilateral contact problem in elasticity. Sci. China Ser. A 49 (2006) 513-524. | MR | Zbl

[29] S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005) 156-173. | MR | Zbl

[30] S. Hüeber, M. Mair and B.I. Wohlmuth, A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math. 54 (2005) 555-576. | MR | Zbl

[31] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM (1988). | MR | Zbl

[32] T.Y. Kim, J.E. Dolbow and T.A. Laursen, A Mortared Finite Element Method for Frictional Contact on Arbitrary Surfaces. Comput. Mech. 39 (2007) 223-235. | Zbl

[33] T.A. Laursen, M.A. Puso and J. Sandersc, Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations. Comput. Methods Appl. Mech. Eng. 205-208 (2012) 3-15. | MR | Zbl

[34] T.A. Laursen and B. Yang, New Developments in Surface-to-Surface Discretization Strategies for Analysis of Interface Mechanics. Computational Plasticity. Comput. Methods Appl. Sci. 7 (2010) 67-86. | MR

[35] M.-X. Li, Q. Lin and S.-H. Zhang, Superconvergence of finite element method for the Signorini problem. J. Comput. Appl. Math. 222 (2008) 284-292. | MR | Zbl

[36] M. Moussaoui and K. Khodja, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Commun. Part. Differ. Equ. 17 (1992) 805-826. | MR | Zbl

[37] M.A. Puso, T.A. Laursen and J. Solberg, A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Meth. Appl. Mech. and Eng. 197 (2008) 555-566. | MR | Zbl

[38] M.A. Puso and T.A. Laursen, A Mortar Segment-to-Segment Contact Method for Large Deformation Solid Mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 601-629. | MR | Zbl

[39] P. Seshaiyer and M. Suri, Uniform h − p Convergence Results for the Mortar Finite Element Method. Math. Comput. 69 521-546 (2000). | MR | Zbl

[40] L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Thèse l'Institut National des Sciences Appliquées de Toulouse (2001).

[41] B.I. Wohlmuth, A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier. SIAM J. Numer. Anal. 38 (2001) 989-1012,. | MR | Zbl

[42] B. Wohlmuth, R. Krause. Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput. 25 (2003) 324-347. | MR | Zbl

[43] B. Yang, T.A. Laursen, X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. Internat. J. Numer. Methods Eng. 62 (2005) 1183-1225. | MR | Zbl

[44] Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993).

Cité par Sources :