Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 4, pp. 1077-1106.

We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers-McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

DOI : 10.1051/m2an/2012058
Classification : 35G31, 35Q92, 49J20, 49K20, 92C30
Mots clés : PDE constrained optimization, bidomain equations, two-variable ionic models, weak local minimizer, existence theorem, necessary optimality conditions, pointwise minimum condition
@article{M2AN_2013__47_4_1077_0,
     author = {Kunisch, Karl and Wagner, Marcus},
     title = {Optimal control of the bidomain system {(III):} {Existence} of minimizers and first-order optimality conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1077--1106},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {4},
     year = {2013},
     doi = {10.1051/m2an/2012058},
     mrnumber = {3082290},
     zbl = {1275.49005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2012058/}
}
TY  - JOUR
AU  - Kunisch, Karl
AU  - Wagner, Marcus
TI  - Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1077
EP  - 1106
VL  - 47
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2012058/
DO  - 10.1051/m2an/2012058
LA  - en
ID  - M2AN_2013__47_4_1077_0
ER  - 
%0 Journal Article
%A Kunisch, Karl
%A Wagner, Marcus
%T Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1077-1106
%V 47
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2012058/
%R 10.1051/m2an/2012058
%G en
%F M2AN_2013__47_4_1077_0
Kunisch, Karl; Wagner, Marcus. Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 4, pp. 1077-1106. doi : 10.1051/m2an/2012058. http://www.numdam.org/articles/10.1051/m2an/2012058/

[1] B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231-247. | MR | Zbl

[2] R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293-301.

[3] M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). | MR | Zbl

[4] Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458-482. | MR | Zbl

[5] A.J.V. Brandaõ, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Eq. (2008) 1-20. | Zbl

[6] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2008). | MR | Zbl

[7] L.C. Evans, Partial Differential Equations. Amer. Math. Soc. Providence (1998). | MR

[8] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445-466.

[9] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | MR | Zbl

[10] K. Kunisch, C. Nagaiah and M. Wagner, A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257-269. | MR

[11] K. Kunisch and M. Wagner, Optimal control of the bidomain system (I): The monodomain approximation with the Rogers-McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525-1550. | MR | Zbl

[12] K. Kunisch and M. Wagner, Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-008 (to appear: Ann. Mat. Pura Appl.) | Zbl

[13] S. Muzdeka and E. Barbieri, Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416-7421.

[14] C. Nagaiah and K. Kunisch, Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 53-65. | MR | Zbl

[15] C. Nagaiah, K. Kunisch and G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149-178. | MR | Zbl

[16] C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) | MR

[17] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 2061-2070.

[18] J.M. Rogers and A.D. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743-757.

[19] S. Rolewicz, Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). | MR | Zbl

[20] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin (2006). | MR | Zbl

[21] L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978).

[22] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849-868. | MR | Zbl

[23] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). | MR | Zbl

[24] K. Yosida, Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). | MR

Cité par Sources :