From Kantorovich's theory we present a semilocal convergence result for Newton's method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton's method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein type.
Mots-clés : Newton's method, the Newton-Kantorovich theorem, semilocal convergence, majorizing sequence, a priori error estimates, Hammerstein's integral equation
@article{M2AN_2013__47_1_149_0, author = {Ezquerro, Jos\'e Antonio and Gonz\'alez, Daniel and Hern\'andez, Miguel \'Angel}, title = {A general semilocal convergence result for {Newton's} method under centered conditions for the second derivative}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {149--167}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012026}, mrnumber = {2968699}, zbl = {1271.65092}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012026/} }
TY - JOUR AU - Ezquerro, José Antonio AU - González, Daniel AU - Hernández, Miguel Ángel TI - A general semilocal convergence result for Newton's method under centered conditions for the second derivative JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 149 EP - 167 VL - 47 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012026/ DO - 10.1051/m2an/2012026 LA - en ID - M2AN_2013__47_1_149_0 ER -
%0 Journal Article %A Ezquerro, José Antonio %A González, Daniel %A Hernández, Miguel Ángel %T A general semilocal convergence result for Newton's method under centered conditions for the second derivative %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 149-167 %V 47 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012026/ %R 10.1051/m2an/2012026 %G en %F M2AN_2013__47_1_149_0
Ezquerro, José Antonio; González, Daniel; Hernández, Miguel Ángel. A general semilocal convergence result for Newton's method under centered conditions for the second derivative. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 149-167. doi : 10.1051/m2an/2012026. http://www.numdam.org/articles/10.1051/m2an/2012026/
[1] Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007) 243-261. | MR | Zbl
and ,[2] A family of Halley-Chebyshev iterative schemes for non-Fréechet differentiable operators. J. Comput. Appl. Math. 228 (2009) 486-493. | MR | Zbl
, , and ,[3] A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J. Comput. Appl. Math. 131 (2001) 149-159. | MR | Zbl
,[4] An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. Optim. 24 (2003) 653-572. | MR | Zbl
,[5] On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004) 315-332. | MR | Zbl
,[6] Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32 (1977) 257-264.
and ,[7] Nonlinear functional analysis. Springer-Verlag, Berlin (1985). | MR | Zbl
,[8] Generalized differentiability conditions for Newton's method. IMA J. Numer. Anal. 22 (2002) 187-205. | MR | Zbl
and ,[9] On an application of Newton's method to nonlinear operators with ω-conditioned second derivative. BIT 42 (2002) 519-530. | MR | Zbl
and ,[10] Halley's method for operators with unbounded second derivative. Appl. Numer. Math. 57 (2007) 354-360. | MR | Zbl
and ,[11] Majorizing sequences for Newton's method from initial value problems. J. Comput. Appl. Math. (submitted). | Zbl
, and ,[12] Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11 (1991) 21-31. | MR | Zbl
and ,[13] A new semilocal convergence theorem for Newton's method. J. Comput. Appl. Math. 79 (1997) 131-145. | MR | Zbl
,[14] On Newton's method for functional equations. Dokl Akad. Nauk SSSR 59 (1948) 1237-1240 (in Russian).
,[15] The majorant principle and Newton's method. Dokl. Akad. Nauk SSSR 76 (1951) 17-20 (in Russian).
,[16] Functional analysis. Pergamon Press, Oxford (1982). | MR | Zbl
and ,[17] Solution of equations in Euclidean and Banach spaces. London, Academic Press (1943). | MR | Zbl
,[18] Sharp error bounds for Newton process. Numer. Math. 34 (1980) 63-72. | MR | Zbl
and ,[19] New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185 (2007) 147-154. | MR | Zbl
and ,[20] A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5 (1968) 42-63. | MR | Zbl
,[21] Convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987) 545-557. | MR | Zbl
,[22] A note on weaker convergence conditions for Newton iteration. J. Zhejiang Univ. Sci. Ed. 30 (2003) 133-135, 144 (in Chinese). | MR | Zbl
,Cité par Sources :